在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
知道跳表(Skip List)是在看关于Redis的书的时候,Redis中的有序集合使用了跳表数据结构。接着就查了一些博客,来学习一下跳表。后面会使用Java代码来简单实现跳表。 什么是跳表跳表由William Pugh发明,他在论文《Skip lists: a probabilistic alternative to balanced trees》中详细介绍了跳表的数据结构和插入删除等操作,论文是这么介绍跳表的:
也就是说,跳表可以用来替代红黑树,使用概率均衡技术,使得插入、删除操作更简单、更快。先来看论文里的一张图:
观察上图
一个拥有k个指针的结点称为一个k层结点(level k node)。按照上面的逻辑,50%的结点为1层,25%的结点为2层,12.5%的结点为3层…如果每个结点的层数随机选取,但仍服从这样的分布呢(上图e,对比上图d)? 使一个k层结点的第i个指针指向第i层的下一个结点,而不是它后面的第2^(i-1)个结点,那么结点的插入和删除只需要原地修改操作;一个结点的层数,是在它被插入的时候随机选取的,并且永不改变。因为这样的数据结构是基于链表的,并且额外的指针会跳过中间结点,所以作者称之为跳表(Skip Lists)。 二分查找底层依赖数组随机访问的特性,所以只能用数组实现。若数据存储在链表,就没法用二分搜索了? 其实只需稍微改造下链表,就能支持类似“二分”的搜索算法,即跳表(Skip list),支持快速的新增、删除、搜索操作。 Redis中的有序集合(Sorted Set)就是用跳表实现的。我们知道红黑树也能实现快速的插入、删除和查找操作。那Redis 为何不选择红黑树来实现呢? 跳表的意义究竟在于何处?单链表即使存储的数据有序,若搜索某数据,也只能从头到尾遍历,搜索效率很低,平均时间复杂度是O(n)。 追求极致的程序员就开始想了,那这该如何提高链表结构的搜索效率呢?
比如要搜索16: 先遍历索引层,当遍历到索引层的13时,发现下一个结点是17,说明目标结点位于这俩结点中间 然后通过down指针,下降到原始链表层,继续遍历 原先单链表结构需遍历10个结点,现在只需遍历7个结点即可。可见,加一层索引,所需遍历的结点个数就减少了,搜索效率提升。 若再加层索引,搜索效率是不是更高?于是每两个结点再抽出一个结点到第二级索引。现在搜索16,只需遍历6个结点了!
这里数据量不大,可能你也没感觉到搜索效率ROI高吗。 那数据量就变大一点,现有一64结点链表,给它建立五级的索引。
原来没有索引时,单链表搜索62需遍历62个结点! 这种有多级索引的,可以提高查询效率的链表就是最近火遍面试圈的跳表。 跳表的搜索时间复杂度我们都知道单链表搜索时间复杂度O(n),那如此快的跳表呢? 若链表有n个结点,会有多少级索引呢?假设每两个结点抽出一个结点作为上级索引,则:
假设索引有h级,最高级索引有2个结点,可得: 所以: 若包含原始链表这一层,整个跳表的高度就是log2 n。我们在跳表中查询某个数据的时候,如果每一层都要遍历m个结点,那在跳表中查询一个数据的时间复杂度就是O(m*logn)。 那这个m的值是多少呢?按照前面这种索引结构,我们每一级索引都最多只需要遍历3个结点,也就是说m=3,为什么是3呢?我来解释一下。 假设我们要查找的数据是x,在第k级索引中,我们遍历到y结点之后,发现x大于y,小于后面的结点z,所以我们通过y的down指针,从第k级索引下降到第k-1级索引。在第k-1级索引中,y和z之间只有3个结点(包含y和z),所以,我们在K-1级索引中最多只需要遍历3个结点,依次类推,每一级索引都最多只需要遍历3个结点。 通过上面的分析,我们得到m=3,所以在跳表中查询任意数据的时间复杂度就是O(logn)。这个查找的时间复杂度跟二分查找是一样的。换句话说,我们其实是基于单链表实现了二分查找,是不是很神奇?不过,天下没有免费的午餐,这种查询效率的提升,前提是建立了很多级索引,也就是我们在第6节讲过的空间换时间的设计思路。 跳表是不是很费内存?由于跳表要存储多级索引,势必比单链表消耗更多存储空间。那到底是多少呢?
多级结点数的总和就是:
所以空间复杂度是O(n)。这个量还是挺大的,能否再稍微降低索引占用的内存空间呢?
假设最高级索引结点个数为1,总索引结点数: 尽管空间复杂度还是O(n),但比上面的每两个结点抽一个结点的索引构建方法,要减少了一半的索引结点存储空间。 我们大可不必过分在意索引占用的额外空间,实际开发中,原始链表中存储的有可能是很大的对象,而索引结点只需存储关键值和几个指针,无需存储对象,所以当对象比索引结点大很多时,那索引占用的额外空间可忽略。 插入和删除的时间复杂度插入在跳表中插入一个数据,只需O(logn)时间复杂度。 单纯的单链表,需遍历每个结点以找到插入的位置。但跳表搜索某结点的的时间复杂度是O(logn),所以搜索某数据应插入的位置的时间复杂度也是O(logn)。 删除如果这个结点在索引中也有出现,除了要删除原始链表的结点,还要删除索引中的。 跳表索引动态更新当不停往跳表插入数据时,若不更新索引,就可能出现某2个索引结点之间数据非常多。极端情况下,跳表还会退化成单链表。
作为一种动态数据结构,我们需要某种手段来维护索引与原始链表大小之间的平衡,也就是说,如果链表中结点多了,索引结点就相应地增加一些,避免复杂度退化,以及查找、插入、删除操作性能下降。 像红黑树、AVL树这样的平衡二叉树通过左右旋保持左右子树的大小平衡,而跳表是通过随机函数维护前面提到的“平衡性”。 往跳表插入数据时,可以选择同时将这个数据插入到部分索引层中。
通过一个随机函数决定将这个结点插入到哪几级索引中,比如随机函数生成了值K,那就把这个结点添加到第一级到第K级这K级索引中。
Redis中的有序集合支持的核心操作主要支持:
除了性能,还有其它原因:
因为红黑树比跳表诞生更早,很多编程语言中的Map类型(比如JDK 的 HashMap)都是通过红黑树实现的。业务开发时,直接从JDK拿来用,但跳表没有一个现成的实现,只能自己实现。 跳表的代码实现(Java 版)数据结构定义表中的元素使用结点来表示,结点的层数在它被插入时随机计算决定(与表中已有结点数目无关)。 一个i层的结点有i个前向指针(java中使用结点对象数组forward来表示),索引为从1到i。用MaxLevel来记录跳表的最大层数。 跳表的层数为当前所有结点中的最大层数(如果list为空,则层数为1)。 列表头header拥有从1到MaxLevel的前向指针: public class SkipList<T> { // 最高层数 private final int MAX_LEVEL; // 当前层数 private int listLevel; // 表头 private SkipListNode<T> listHead; // 表尾 private SkipListNode<T> NIL; // 生成randomLevel用到的概率值 private final double P; // 论文里给出的最佳概率值 private static final double OPTIMAL_P = 0.25; public SkipList() { // 0.25, 15 this(OPTIMAL_P, (int)Math.ceil(Math.log(Integer.MAX_VALUE) / Math.log(1 / OPTIMAL_P)) - 1); } public SkipList(double probability, int maxLevel) { P = probability; MAX_LEVEL = maxLevel; listLevel = 1; listHead = new SkipListNode<T>(Integer.MIN_VALUE, null, maxLevel); NIL = new SkipListNode<T>(Integer.MAX_VALUE, null, maxLevel); for (int i = listHead.forward.length - 1; i >= 0; i--) { listHead.forward[i] = NIL; } } // 内部类 class SkipListNode<T> { int key; T value; SkipListNode[] forward; public SkipListNode(int key, T value, int level) { this.key = key; this.value = value; this.forward = new SkipListNode[level]; } } } 搜索算法按key搜索,找到返回该key对应的value,未找到则返回null。 通过遍历forward数组来需找特定的searchKey。假设skip list的key按照从小到大的顺序排列,那么从跳表的当前最高层listLevel开始寻找searchKey。在某一层找到一个非小于searchKey的结点后,跳到下一层继续找,直到最底层为止。那么根据最后搜索停止位置的下一个结点,就可以判断searchKey在不在跳表中。 在跳表中找8的过程:
插入和删除算法都是通过查找与连接(search and splice):
维护一个update数组,在搜索结束之后,update[i]保存的是待插入/删除结点在第i层的左侧结点。 插入若key不存在,则插入该key与对应的value;若key存在,则更新value。 如果待插入的结点的层数高于跳表的当前层数listLevel,则更新listLevel。 选择待插入结点的层数randomLevel: randomLevel只依赖于跳表的最高层数和概率值p。 另一种实现方法为,如果生成的randomLevel大于当前跳表的层数listLevel,那么将randomLevel设置为listLevel+1,这样方便以后的查找,在工程上是可以接受的,但同时也破坏了算法的随机性。 删除删除特定的key与对应的value。如果待删除的结点为跳表中层数最高的结点,那么删除之后,要更新listLevel。 public class SkipList<T> { // 最高层数 private final int MAX_LEVEL; // 当前层数 private int listLevel; // 表头 private SkipListNode<T> listHead; // 表尾 private SkipListNode<T> NIL; // 生成randomLevel用到的概率值 private final double P; // 论文里给出的最佳概率值 private static final double OPTIMAL_P = 0.25; public SkipList() { // 0.25, 15 this(OPTIMAL_P, (int)Math.ceil(Math.log(Integer.MAX_VALUE) / Math.log(1 / OPTIMAL_P)) - 1); } public SkipList(double probability, int maxLevel) { P = probability; MAX_LEVEL = maxLevel; listLevel = 1; listHead = new SkipListNode<T>(Integer.MIN_VALUE, null, maxLevel); NIL = new SkipListNode<T>(Integer.MAX_VALUE, null, maxLevel); for (int i = listHead.forward.length - 1; i >= 0; i--) { listHead.forward[i] = NIL; } } // 内部类 class SkipListNode<T> { int key; T value; SkipListNode[] forward; public SkipListNode(int key, T value, int level) { this.key = key; this.value = value; this.forward = new SkipListNode[level]; } } public T search(int searchKey) { SkipListNode<T> curNode = listHead; for (int i = listLevel; i > 0; i--) { while (curNode.forward[i].key < searchKey) { curNode = curNode.forward[i]; } } if (curNode.key == searchKey) { return curNode.value; } else { return null; } } public void insert(int searchKey, T newValue) { SkipListNode<T>[] update = new SkipListNode[MAX_LEVEL]; SkipListNode<T> curNode = listHead; for (int i = listLevel - 1; i >= 0; i--) { while (curNode.forward[i].key < searchKey) { curNode = curNode.forward[i]; } // curNode.key < searchKey <= curNode.forward[i].key update[i] = curNode; } curNode = curNode.forward[0]; if (curNode.key == searchKey) { curNode.value = newValue; } else { int lvl = randomLevel(); if (listLevel < lvl) { for (int i = listLevel; i < lvl; i++) { update[i] = listHead; } listLevel = lvl; } SkipListNode<T> newNode = new SkipListNode<T>(searchKey, newValue, lvl); for (int i = 0; i < lvl; i++) { newNode.forward[i] = update[i].forward[i]; update[i].forward[i] = newNode; } } } public void delete(int searchKey) { SkipListNode<T>[] update = new SkipListNode[MAX_LEVEL]; SkipListNode<T> curNode = listHead; for (int i = listLevel - 1; i >= 0; i--) { while (curNode.forward[i].key < searchKey) { curNode = curNode.forward[i]; } // curNode.key < searchKey <= curNode.forward[i].key update[i] = curNode; } curNode = curNode.forward[0]; if (curNode.key == searchKey) { for (int i = 0; i < listLevel; i++) { if (update[i].forward[i] != curNode) { break; } update[i].forward[i] = curNode.forward[i]; } while (listLevel > 0 && listHead.forward[listLevel - 1] == NIL) { listLevel--; } } } private int randomLevel() { int lvl = 1; while (lvl < MAX_LEVEL && Math.random() < P) { lvl++; } return lvl; } public void print() { for (int i = listLevel - 1; i >= 0; i--) { SkipListNode<T> curNode = listHead.forward[i]; while (curNode != NIL) { System.out.print(curNode.key + "->"); curNode = curNode.forward[i]; } System.out.println("NIL"); } } public static void main(String[] args) { SkipList<Integer> sl = new SkipList<Integer>(); sl.insert(20, 20); sl.insert(5, 5); sl.insert(10, 10); sl.insert(1, 1); sl.insert(100, 100); sl.insert(80, 80); sl.insert(60, 60); sl.insert(30, 30); sl.print(); System.out.println("---"); sl.delete(20); sl.delete(100); sl.print(); } } 到此这篇关于为何Redis使用跳表而非红黑树实现SortedSet的文章就介绍到这了,更多相关Redis跳表实现SortedSet内容请搜索极客世界以前的文章或继续浏览下面的相关文章希望大家以后多多支持极客世界! |
请发表评论