在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
docker通过cgroup来控制容器使用的资源配额,包括CPU、内存、磁盘三大方面,基本覆盖了常见的资源配额和使用量控制。 cgroup简介 cgroup是Control Groups的缩写,是Linux 内核提供的一种可以限制、记录、隔离进程组所使用的物理资源(如 cpu、memory、磁盘IO等等) 的机制,被LXC、docker等很多项目用于实现进程资源控制。cgroup将任意进程进行分组化管理的 Linux 内核功能。cgroup本身是提供将进程进行分组化管理的功能和接口的基础结构,I/O 或内存的分配控制等具体的资源管理功能是通过这个功能来实现的。这些具体的资源管理功能称为cgroup子系统,有以下几大子系统实现:
目前docker只是用了其中一部分子系统,实现对资源配额和使用的控制。 可以使用stress工具来测试CPU和内存。使用下面的Dockerfile来创建一个基于Ubuntu的stress工具镜像。 FROM ubuntu:14.04 RUN apt-get update &&apt-get install stress CPU资源配额控制 CPU份额控制 docker提供了 使用命令 root@ubuntu:~# cat /sys/fs/cgroup/cpu/docker/<容器的完整长ID>/cpu.shares 100 cpu-shares的值不能保证可以获得1个vcpu或者多少GHz的CPU资源,仅仅只是一个弹性的加权值。 默认情况下,每个docker容器的cpu份额都是1024。单独一个容器的份额是没有意义的,只有在同时运行多个容器时,容器的cpu加权的效果才能体现出来。例如,两个容器A、B的cpu份额分别为1000和500,在cpu进行时间片分配的时候,容器A比容器B多一倍的机会获得CPU的时间片,但分配的结果取决于当时主机和其他容器的运行状态,实际上也无法保证容器A一定能获得CPU时间片。比如容器A的进程一直是空闲的,那么容器B是可以获取比容器A更多的CPU时间片的。极端情况下,比如说主机上只运行了一个容器,即使它的cpu份额只有50,它也可以独占整个主机的cpu资源。 cgroups只在容器分配的资源紧缺时,也就是说在需要对容器使用的资源进行限制时,才会生效。因此,无法单纯根据某个容器的cpu份额来确定有多少cpu资源分配给它,资源分配结果取决于同时运行的其他容器的cpu分配和容器中进程运行情况。 CPU周期控制 docker提供了–cpu-period、–cpu-quota两个参数控制容器可以分配到的CPU时钟周期。–cpu-period是用来指定容器对CPU的使用要在多长时间内做一次重新分配,而–cpu-quota是用来指定在这个周期内,最多可以有多少时间用来跑这个容器。跟–cpu-shares不同的是这种配置是指定一个绝对值,而且没有弹性在里面,容器对CPU资源的使用绝对不会超过配置的值。 举个例子,如果容器进程需要每1秒使用单个CPU的0.2秒时间,可以将cpu-period设置为1000000(即1秒),cpu-quota设置为200000(0.2秒)。当然,在多核情况下,如果允许容器进程需要完全占用两个CPU,则可以将cpu-period设置为100000(即0.1秒),cpu-quota设置为200000(0.2秒)。 使用示例: 使用命令 root@ubuntu:~# cat /sys/fs/cgroup/cpu/docker/<容器的完整长ID>/cpu.cfs_period_us 100000 root@ubuntu:~# cat /sys/fs/cgroup/cpu/docker/<容器的完整长ID>/cpu.cfs_quota_us 200000 关于cpu-shares、cpu-period、cpu-quota这些配置的详细介绍,大家可以深入阅读RedHat文档中关于CPU的这一章。 CPU core控制 对多核CPU的服务器,docker还可以控制容器运行限定使用哪些cpu内核和内存节点,即使用–cpuset-cpus和–cpuset-mems参数。对具有NUMA拓扑(具有多CPU、多内存节点)的服务器尤其有用,可以对需要高性能计算的容器进行性能最优的配置。如果服务器只有一个内存节点,则–cpuset-mems的配置基本上不会有明显效果。 使用示例: 命令docker run -tid –name cpu1 –cpuset-cpus 0-2 ubuntu,表示创建的容器只能用0、1、2这三个内核。最终生成的cgroup的cpu内核配置如下: root@ubuntu:~# cat /sys/fs/cgroup/cpuset/docker/<容器的完整长ID>/cpuset.cpus 0-2 通过docker exec <容器ID> taskset -c -p 1(容器内部第一个进程编号一般为1),可以看到容器中进程与CPU内核的绑定关系,可以认为达到了绑定CPU内核的目的。
CPU配额控制参数的混合使用 当上面这些参数中时,cpu-shares控制只发生在容器竞争同一个内核的时间片时,如果通过cpuset-cpus指定容器A使用内核0,容器B只是用内核1,在主机上只有这两个容器使用对应内核的情况,它们各自占用全部的内核资源,cpu-shares没有明显效果。 cpu-period、cpu-quota这两个参数一般联合使用,在单核情况或者通过cpuset-cpus强制容器使用一个cpu内核的情况下,即使cpu-quota超过cpu-period,也不会使容器使用更多的CPU资源。 cpuset-cpus、cpuset-mems只在多核、多内存节点上的服务器上有效,并且必须与实际的物理配置匹配,否则也无法达到资源控制的目的。 在系统具有多个CPU内核的情况下,需要通过cpuset-cpus为容器CPU内核才能比较方便地进行测试。 试用下列命令创建测试用的容器: docker run -tid –name cpu2 –cpuset-cpus 3 –cpu-shares 512 ubuntu:stress stress -c 10 docker run -tid –name cpu3 –cpuset-cpus 3 –cpu-shares 1024 ubuntu:stress stress -c 10 上面的ubuntu:stress镜像安装了stress工具来测试CPU和内存的负载。两个容器的命令stress -c 10&,这个命令将会给系统一个随机负载,产生10个进程,每个进程都反复不停的计算由rand()产生随机数的平方根,直到资源耗尽。 观察到宿主机上的CPU试用率如下图所示,第三个内核的使用率接近100%,并且一批进程的CPU使用率明显存在2:1的使用比例的对比:
容器cpu2的CPU使用如下所示:
容器cpu3的CPU使用如下图示:
分别进入容器后,使用top命令可以明显地看出容器之间的资源使用对比,并且也达到了绑定CPU内核的目的。 内存配额控制 和CPU控制一样,docker也提供了若干参数来控制容器的内存使用配额,可以控制容器的swap大小、可用内存大小等各种内存方面的控制。主要有以下参数:
默认情况下,容器可以使用主机上的所有空闲内存。 与CPU的cgroups配置类似,docker会自动为容器在目录/sys/fs/cgroup/memory/docker/<容器的完整长ID>中创建相应cgroup配置文件,例如下面的文件:
这些文件与docker的相关配置是一一对应的,可以参考RedHat的文档Resource_Management_Guide的内存部分来查看它们的作用。 内存配额控制使用示例 设置容器的内存上限,参考命令如下所示: docker run -tid —name mem1 —memory 128m ubuntu:stress /bin/bash 默认情况下,除了–memory指定的内存大小以外,docker还为容器分配了同样大小的swap分区,也就是说,上面的命令创建出的容器实际上最多可以使用256MB内存,而不是128MB内存。如果需要自定义swap分区大小,则可以通过联合使用–memory–swap参数来实现控制。 对上面的命令创建的容器,可以查看到在cgroups的配置文件中,查看到容器的内存大小为128MB (128×1024×1024=134217728B),内存和swap加起来大小为256MB (256×1024×1024=268435456B)。 cat /sys/fs/cgroup/memory/docker/<容器的完整ID>/memory.limit_in_bytes 134217728 cat /sys/fs/cgroup/memory/docker/<容器的完整ID>/memory.memsw.limit_in_bytes 268435456 注意:执行上述命令时,命令行可能会输出下面的警告: WARNING: Your kernel does not support swap limit capabilities, memory limited without swap. 这是因为主机上默认不启用cgroup来控制swap分区,可以参考docker官方的相应文档,修改grub启动参数。 在容器中,依次使用下面的stress命令,即可对容器的内存进行压力测试,确认内存。 stress –vm 1 –vm-bytes 256M –vm-hang 0 & stress –vm 1 –vm-bytes 250M –vm-hang 0 &
可以发现,使用256MB进行压力测试时,由于超过了内存上限(128MB内存+128MB swap),进程被OOM杀死。使用250MB进行压力测试时,进程可以正常运行,并且通过docker stats可以查看到容器的内存已经满负载了。
磁盘IO配额控制 相对于CPU和内存的配额控制,docker对磁盘IO的控制相对不成熟,大多数都必须在有宿主机设备的情况下使用。主要包括以下参数:
磁盘IO配额控制示例 blkio-weight 要使–blkio-weight生效,需要保证IO的调度算法为CFQ。可以使用下面的方式查看: root@ubuntu:~# cat /sys/block/sda/queue/scheduler noop [deadline] cfq 使用下面的命令创建两个–blkio-weight值不同的容器: docker run -ti –rm –blkio-weight 100 ubuntu:stress docker run -ti –rm –blkio-weight 1000 ubuntu:stress 在容器中同时执行下面的dd命令,进行测试: time dd if=/dev/zero of=test.out bs=1M count=1024 oflag=direct 最终输出如下图所示:
在我的测试环境上没有达到理想的测试效果,通过docker官方的 device-write-bps 使用下面的命令创建容器,并执行命令验证写速度的限制。 docker run -tid –name disk1 –device-write-bps /dev/sda:1mb ubuntu:stress 通过dd来验证写速度,输出如下图示:
可以看到容器的写磁盘速度被成功地限制到了1MB/s。device-read-bps等其他磁盘IO限制参数可以使用类似的方式进行验证。 容器空间大小限制 在docker使用devicemapper作为存储驱动时,默认每个容器和镜像的最大大小为10G。如果需要调整,可以在daemon启动参数中,使用dm.basesize来指定,但需要注意的是,修改这个值,不仅仅需要重启docker daemon服务,还会导致宿主机上的所有本地镜像和容器都被清理掉。 使用aufs或者overlay等其他存储驱动时,没有这个限制。 ~~~以上所有截图测试环境,宿主机为Ubuntu 14.04.4,docker版本为1.10.3~~~ 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持极客世界。 |
请发表评论