在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
第 一次听说google的simhash算法[1]时,我感到很神奇。传统的hash算法只负责将原始内容尽量均匀随机地映射为一个签名值,原理上相当于伪 随机数产生算法。传统hash算法产生的两个签名,如果相等,说明原始内容在一定概率下是相等的;如果不相等,除了说明原始内容不相等外,不再提供任何信 息,因为即使原始内容只相差一个字节,所产生的签名也很可能差别极大。从这个意义上来说,要设计一个hash算法,对相似的内容产生的签名也相近,是更为 艰难的任务,因为它的签名值除了提供原始内容是否相等的信息外,还能额外提供不相等的原始内容的差异程度的信息。 simhash算法的输入是一个向量,输出是一个f位的签名值。为了陈述方便,假设输入的是一个文档的特征集合,每个特征有一定的权重。比如特征可以是文档中的词,其权重可以是这个词出现的次数。simhash算法如下:
1,将一个f维的向量V初始化为0;f位的二进制数S初始化为0; 2,对每一个特征:用传统的hash算法对该特征产生一个f位的签名b。对i=1到f: 如果b的第i位为1,则V的第i个元素加上该特征的权重; 否则,V的第i个元素减去该特征的权重。 3,如果V的第i个元素大于0,则S的第i位为1,否则为0; 4,输出S作为签名。
这个算法的几何意义非常明了。它首先将每一个特征映射为f维空间的一个向量,这个映射规则具体是怎样并不重要,只要对很多不同的特征来说,它们对所对应的向 量是均匀随机分布的,并且对相同的特征来说对应的向量是唯一的就行。比如一个特征的4位hash签名的二进制表示为1010,那么这个特征对应的4维向量 就是(1, -1, 1, -1)T,即hash签名的某一位为1,映射到的向量的对应位就为1,否则为-1。然后,将一个文档中 所包含的各个特征对应的向量加权求和,加权的系数等于该特征的权重。得到的和向量即表征了这个文档,我们可以用向量之间的夹角来衡量对应文档之间的相似 度。最后,为了得到一个f位的签名,需要进一步将其压缩,如果和向量的某一维大于0,则最终签名的对应位为1,否则为0。这样的压缩相当于只留下了和向量 所在的象限这个信息,而64位的签名可以表示多达264个象限,因此只保存所在象限的信息也足够表征一个文档了。
明确了算法了几何意义,使这个算法直观上看来是合理的。但是,为何最终得到的签名相近的程度,可以衡量原始文档的相似程度呢?这需要一个清晰的思路和证明。 在simhash的发明人Charikar的论文中[2]并没有给出具体的simhash算法和证明,以下列出我自己得出的证明思路。
1,随机产生f个n维的向量r1,…rf; 2,对每一个向量ri,如果v与ri的点积大于0,则最终签名的第i位为1,否则为0.
这 个算法相当于随机产生了f个n维超平面,每个超平面将向量v所在的空间一分为二,v在这个超平面上方则得到一个1,否则得到一个0,然后将得到的f个0或 1组合起来成为一个f维的签名。如果两个向量u, v的夹角为θ,则一个随机超平面将它们分开的概率为θ/π,因此u, v的签名的对应位不同的概率等于θ/π。所以,我们可以用两个向量的签名的不同的对应位的数量,即汉明距离,来衡量这两个向量的差异程度。
按simhash算法,要得到一个文档向量
的签名,
然后根据simhash算法的步骤3,得到最终的签名s=001。
第2个5维向量由h(w1),…,h(w5)的第2维组成:
同理,第3个5维向量为:
按随机超平面算法的步骤2,分别求向量d与r1,r2,r3的点积: 从上面的计算过程可以看出,simhash算法其实与随机超平面hash算法是相同的,simhash算法得到的两个签名的汉明距离,可以用来衡量原始向量 的夹角。这其实是一种降维技术,将高维的向量用较低维度的签名来表征。衡量两个内容相似度,需要计算汉明距离,这对给定签名查找相似内容的应用来说带来了 一些计算上的困难;我想,是否存在更为理想的simhash算法,原始内容的差异度,可以直接由签名值的代数差来表示呢? 附参考文献: [1] Detecting near-duplicates for web crawling. [2] Similarity estimation techniques from rounding algorithms. [3] http://en.wikipedia.org/wiki/Locality_sensitive_hashing [4] http://www.coolsnap.net/kevin/?p=23 原文来自cnblogs的linecong用户2010/08/28发布的文章,感谢原创的贡献。不过原文已经死链,所以这里去掉了原文链接, qingchuan于2017年03月10号。 |
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13