• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

在Pandas中更改列的数据类型【方法总结】

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

先看一个非常简单的例子:

a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']]
df = pd.DataFrame(a)

有什么方法可以将列转换为适当的类型?例如,上面的例子,如何将列2和3转为浮点数?有没有办法将数据转换为DataFrame格式时指定类型?或者是创建DataFrame,然后通过某种方法更改每列的类型?理想情况下,希望以动态的方式做到这一点,因为可以有数百个列,明确指定哪些列是哪种类型太麻烦。可以假定每列都包含相同类型的值。

解决方法

可以用的方法简单列举如下:

对于创建DataFrame的情形

如果要创建一个DataFrame,可以直接通过dtype参数指定类型:


df = pd.DataFrame(a, dtype='float')  #示例1
df = pd.DataFrame(data=d, dtype=np.int8) #示例2
df = pd.read_csv("somefile.csv", dtype = {'column_name' : str})

对于单列或者Series

下面是一个字符串Seriess的例子,它的dtype为object

>>> s = pd.Series(['1', '2', '4.7', 'pandas', '10'])
>>> s
0         1
1         2
2       4.7
3    pandas
4        10
dtype: object

使用to_numeric转为数值。默认情况下,它不能处理字母型的字符串’pandas’:

>>> pd.to_numeric(s) # or pd.to_numeric(s, errors='raise')
ValueError: Unable to parse string

可以将无效值强制转换为NaN,如下所示:

>>> pd.to_numeric(s, errors='coerce')
0     1.0
1     2.0
2     4.7
3     NaN
4    10.0
dtype: float64

如果遇到无效值,第三个选项就是忽略该操作:

>>> pd.to_numeric(s, errors='ignore')
# the original Series is returned untouched

对于多列或者整个DataFrame

如果想要将这个操作应用到多个列,依次处理每一列是非常繁琐的,所以可以使用DataFrame.apply处理每一列。

对于某个DataFrame:

>>> a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']]
>>> df = pd.DataFrame(a, columns=['col1','col2','col3'])
>>> df
  col1 col2  col3
0    a  1.2   4.2
1    b   70  0.03
2    x    5     0

然后可以写:

df[['col2','col3']] = df[['col2','col3']].apply(pd.to_numeric)

那么’col2’和’col3’根据需要具有float64类型。

但是,可能不知道哪些列可以可靠地转换为数字类型。在这种情况下,设置参数:

df.apply(pd.to_numeric, errors='ignore')

然后该函数将被应用于整个DataFrame,可以转换为数字类型的列将被转换,而不能(例如,它们包含非数字字符串或日期)的列将被单独保留。

另外pd.to_datetimepd.to_timedelta可将数据转换为日期和时间戳。

软转换——类型自动推断

版本0.21.0引入了infer_objects()方法,用于将具有对象数据类型的DataFrame的列转换为更具体的类型。

例如,用两列对象类型创建一个DataFrame,其中一个保存整数,另一个保存整数的字符串:

>>> df = pd.DataFrame({'a': [7, 1, 5], 'b': ['3','2','1']}, dtype='object')
>>> df.dtypes
a    object
b    object
dtype: object

然后使用infer_objects(),可以将列’a’的类型更改为int64:

>>> df = df.infer_objects()
>>> df.dtypes
a     int64
b    object
dtype: object

由于’b’的值是字符串,而不是整数,因此’b’一直保留。

astype强制转换

如果试图强制将两列转换为整数类型,可以使用df.astype(int)

示例如下:

a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']]
df = pd.DataFrame(a, columns=['one', 'two', 'three'])
df
Out[16]: 
  one  two three
0   a  1.2   4.2
1   b   70  0.03
2   x    5     0

df.dtypes
Out[17]: 
one      object
two      object
three    object

df[['two', 'three']] = df[['two', 'three']].astype(float)

df.dtypes
Out[19]: 
one       object
two      float64
three    float64

参考文献

  • Change data type of columns in Pandas


鲜花

握手

雷人

路过

鸡蛋
专题导读
上一篇:
在IntelliJ IDEA中输入命令行参数发布时间:2022-05-14
下一篇:
将Numpy数组保存为图像发布时间:2022-05-14
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap