Johnson-Lindenstrauss绑定为带有随机投影的嵌入简介
Johnson-Lindenstrauss引理(简称JL引理)指出,任何高维数据集都可以随机投影到低维欧氏空间中,同时控制点的两两距离的失真度。也就说将点从高维空间映射到低维空间之后,新旧空间点的距离是可以近似相等的。
理论界限
随机投影引起的失真度p, 如下式所示:
其中u和v是从大小为[n_samples,n_features]的数据集中获取的任意行,而p是形状为[n_components,n_features](或稀疏Achlioptas矩阵)的随机高斯N(0,1)矩阵的投影。
保证eps-embedding的最小组件数量为:
注:见后文代码执行的图,
- 第一个图显示随着样本数量n_samples的增加,最小尺寸
n_components 对数增加以保证eps -embedding。
- 第二个图显示了对于给定数量的样本
n_samples, 容许失真的增加eps可以 大幅减少最小维度n_components
实证验证
我们在手写数字数据集或20个新闻组文本文档(TF-IDF词频)数据集上验证上述界限:
- 对于手写数字数据集,将500张手写数字图片的一些8×8灰度像素数据随机投影到各种较大维度n_components的空间。
- 对于20个新闻组数据集,使用稀疏随机矩阵将总共500个具有10万个特征的文档投影到较小的欧几里得空间,并为目标维数n_components设置不同的值。
示例中默认数据集是数字数据集。要在二十个新闻组数据集上运行该示例,请将–twenty-newsgroups命令行参数传递给此脚本。
对于每个值n_components ,我们绘制:
- 原始空间和投影空间中成对距离的样本对的2D分布(2D分别为x和y轴)。
- 这些距离的比例的一维直方图(投影/原始)。
我们可以看到,对于较小的n_components, 分布较宽,有许多扭曲的对和偏斜的分布(由于左侧的零比率的硬性限制,因为距离始终为正值);而对于较大的n_components值,则可以控制失真,并且通过随机投影可以很好地保留距离。
备注
根据JL引理,无论原始数据集的特征数量如何,投影500个样本而不会产生太多失真都将至少需要数千个维度。
因此,对在输入空间中仅具有64个特征的数字数据集使用随机投影是没有意义的:在这种情况下,它不允许降维。所以在这个手写数字数据集上我们实验用的是增加维度。而另一方面,在二十个新闻组数据集中,维数可以从56436降低到10000,同时合理地保持点对的距离。
代码实现[Python]
# -*- coding: utf-8 -*-
print(__doc__)
import sys
from time import time
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from distutils.version import LooseVersion
from sklearn.random_projection import johnson_lindenstrauss_min_dim
from sklearn.random_projection import SparseRandomProjection
from sklearn.datasets import fetch_20newsgroups_vectorized
from sklearn.datasets import load_digits
from sklearn.metrics.pairwise import euclidean_distances
# `normed` is being deprecated in favor of `density` in histograms
if LooseVersion(matplotlib.__version__) >= '2.1':
density_param = {'density': True}
else:
density_param = {'normed': True}
# Part 1: 绘制n_components_min和n_samples之间的理论依赖性
# 容许失真的范围
eps_range = np.linspace(0.1, 0.99, 5)
colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(eps_range)))
# range of number of samples (observation) to embed
n_samples_range = np.logspace(1, 9, 9)
plt.figure()
for eps, color in zip(eps_range, colors):
min_n_components = johnson_lindenstrauss_min_dim(n_samples_range, eps=eps)
plt.loglog(n_samples_range, min_n_components, color=color)
plt.legend(["eps = %0.1f" % eps for eps in eps_range], loc="lower right")
plt.xlabel("Number of observations to eps-embed")
plt.ylabel("Minimum number of dimensions")
plt.title("Johnson-Lindenstrauss bounds:\nn_samples vs n_components")
# 容许失真的范围
eps_range = np.linspace(0.01, 0.99, 100)
# range of number of samples (observation) to embed
n_samples_range = np.logspace(2, 6, 5)
colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(n_samples_range)))
plt.figure()
for n_samples, color in zip(n_samples_range, colors):
min_n_components = johnson_lindenstrauss_min_dim(n_samples, eps=eps_range)
plt.semilogy(eps_range, min_n_components, color=color)
plt.legend(["n_samples = %d" % n for n in n_samples_range], loc="upper right")
plt.xlabel("Distortion eps")
plt.ylabel("Minimum number of dimensions")
plt.title("Johnson-Lindenstrauss bounds:\nn_components vs eps")
# Part 2: 对维数很低且密度高的某些数字图像或对维数高且稀疏的20个新闻组数据集执行稀疏随机投影
if '--twenty-newsgroups' in sys.argv:
# Need an internet connection hence not enabled by default
data = fetch_20newsgroups_vectorized().data[:500]
else:
data = load_digits().data[:500]
n_samples, n_features = data.shape
print("Embedding %d samples with dim %d using various random projections"
% (n_samples, n_features))
n_components_range = np.array([300, 1000, 10000])
dists = euclidean_distances(data, squared=True).ravel()
# 仅选择不相同的样本对
nonzero = dists != 0
dists = dists[nonzero]
for n_components in n_components_range:
t0 = time()
rp = SparseRandomProjection(n_components=n_components)
projected_data = rp.fit_transform(data)
print("Projected %d samples from %d to %d in %0.3fs"
% (n_samples, n_features, n_components, time() - t0))
if hasattr(rp, 'components_'):
n_bytes = rp.components_.data.nbytes
n_bytes += rp.components_.indices.nbytes
print("Random matrix with size: %0.3fMB" % (n_bytes / 1e6))
projected_dists = euclidean_distances(
projected_data, squared=True).ravel()[nonzero]
plt.figure()
plt.hexbin(dists, projected_dists, gridsize=100, cmap=plt.cm.PuBu)
plt.xlabel("Pairwise squared distances in original space")
plt.ylabel("Pairwise squared distances in projected space")
plt.title("Pairwise distances distribution for n_components=%d" %
n_components)
cb = plt.colorbar()
cb.set_label('Sample pairs counts')
rates = projected_dists / dists
print("Mean distances rate: %0.2f (%0.2f)"
% (np.mean(rates), np.std(rates)))
plt.figure()
plt.hist(rates, bins=50, range=(0., 2.), edgecolor='k', **density_param)
plt.xlabel("Squared distances rate: projected / original")
plt.ylabel("Distribution of samples pairs")
plt.title("Histogram of pairwise distance rates for n_components=%d" %
n_components)
# TODO: compute the expected value of eps and add them to the previous plot
# as vertical lines / region
plt.show()
代码执行
代码运行时间大约:0分1.837秒。
运行代码输出的文本内容如下:
Embedding 500 samples with dim 64 using various random projections
Projected 500 samples from 64 to 300 in 0.016s
Random matrix with size: 0.028MB
Mean distances rate: 0.97 (0.08)
Projected 500 samples from 64 to 1000 in 0.048s
Random matrix with size: 0.096MB
Mean distances rate: 0.99 (0.05)
Projected 500 samples from 64 to 10000 in 0.594s
Random matrix with size: 0.964MB
Mean distances rate: 1.01 (0.01)
运行代码输出的图片内容如下:
源码下载
- Python版源码文件: plot_johnson_lindenstrauss_bound.py
- Jupyter Notebook版源码文件: plot_johnson_lindenstrauss_bound.ipynb
参考资料
- The Johnson-Lindenstrauss bound for embedding with random projections
|