• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Java Encoders类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Java中org.apache.spark.sql.Encoders的典型用法代码示例。如果您正苦于以下问题:Java Encoders类的具体用法?Java Encoders怎么用?Java Encoders使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



Encoders类属于org.apache.spark.sql包,在下文中一共展示了Encoders类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Java代码示例。

示例1: toJson

import org.apache.spark.sql.Encoders; //导入依赖的package包/类
/**
 * Converts a set of FHIR resources to JSON.
 *
 * @param dataset a dataset containing FHIR resources
 * @param resourceType the FHIR resource type
 * @return a dataset of JSON strings for the FHIR resources
 */
public static Dataset<String> toJson(Dataset<?> dataset, String resourceType) {

  Dataset<IBaseResource> resourceDataset =
      dataset.as(FhirEncoders.forStu3()
          .getOrCreate()
          .of(resourceType));

  return resourceDataset.map(new ToJson(), Encoders.STRING());
}
 
开发者ID:cerner,项目名称:bunsen,代码行数:17,代码来源:Functions.java


示例2: main

import org.apache.spark.sql.Encoders; //导入依赖的package包/类
public static void main(String[] args) {
    SparkSession spark = SparkSession
        .builder()
        .appName("Dataset-JavaBean")
        .master("local[4]")
        .getOrCreate();

    //
    // The Java API requires you to explicitly instantiate an encoder for
    // any JavaBean you want to use for schema inference
    //
    Encoder<Number> numberEncoder = Encoders.bean(Number.class);
    //
    // Create a container of the JavaBean instances
    //
    List<Number> data = Arrays.asList(
            new Number(1, "one", "un"),
            new Number(2, "two", "deux"),
            new Number(3, "three", "trois"));
    //
    // Use the encoder and the container of JavaBean instances to create a
    // Dataset
    //
    Dataset<Number> ds = spark.createDataset(data, numberEncoder);

    System.out.println("*** here is the schema inferred from the bean");
    ds.printSchema();

    System.out.println("*** here is the data");
    ds.show();

    // Use the convenient bean-inferred column names to query
    System.out.println("*** filter by one column and fetch others");
    ds.where(col("i").gt(2)).select(col("english"), col("french")).show();

    spark.stop();
}
 
开发者ID:spirom,项目名称:learning-spark-with-java,代码行数:38,代码来源:JavaBean.java


示例3: readText

import org.apache.spark.sql.Encoders; //导入依赖的package包/类
private Dataset<Row> readText(String path) throws Exception {
  Dataset<Row> lines = Contexts.getSparkSession().read().text(path);

  if (config.hasPath("translator")) {
    Dataset<Tuple2<String, String>> keyedLines = lines.map(
        new PrepareLineForTranslationFunction(), Encoders.tuple(Encoders.STRING(), Encoders.STRING()));
    
    TranslateFunction<String, String> translateFunction = new TranslateFunction<>(config.getConfig("translator"));
    
    return keyedLines.flatMap(translateFunction, RowEncoder.apply(translateFunction.getSchema()));
  }
  else {
    return lines;
  }
}
 
开发者ID:cloudera-labs,项目名称:envelope,代码行数:16,代码来源:FileSystemInput.java


示例4: getMaxInt

import org.apache.spark.sql.Encoders; //导入依赖的package包/类
public static Dataset getMaxInt(Dataset ds, final String columnName){
    Encoder<Integer> integerEncoder = Encoders.INT();

    log.debug("getMaxInt on "+columnName);
    Dataset dso = ds.mapPartitions(new MapPartitionsFunction() {
        List<Integer> result = new ArrayList<>();

        @Override
        public Iterator call(Iterator input) throws Exception {
            int curMax=-1;
            while (input.hasNext()) {


                Integer wInt = ((Row) input.next()).getAs(columnName);

                //only add if we found large value
                //Think of this a reduce before the partition reduce
                log.debug("wInt "+ wInt.intValue());
                log.debug("curMax"+ curMax);

                log.debug("Checking max int");
                if (wInt.intValue()>curMax) {
                    result.add(wInt);
                    curMax = wInt.intValue();
                }
            }
            return result.iterator();

        }
    }, integerEncoder);


    return dso.toDF(columnName).agg(max(columnName));


}
 
开发者ID:kineticadb,项目名称:kinetica-connector-spark,代码行数:37,代码来源:TypeIntProcessor.java


示例5: start

import org.apache.spark.sql.Encoders; //导入依赖的package包/类
private void start() {
        SparkSession spark = SparkSession.builder()
                .appName("Array to Dataset")
//                .master("local")
                .master("spark://10.0.100.81:7077")
                .getOrCreate();

        String[] l = new String[] { "a", "b", "c", "d" };
        List<String> data = Arrays.asList(l);
        Dataset<String> df = spark.createDataset(data, Encoders.STRING());
        df.show();
    }
 
开发者ID:jgperrin,项目名称:net.jgp.labs.spark,代码行数:13,代码来源:ArrayToDatasetApp.java


示例6: start

import org.apache.spark.sql.Encoders; //导入依赖的package包/类
private void start() {
    SparkSession spark = SparkSession.builder()
            .appName("Array to Dataframe")
            .master("local")
            .getOrCreate();

    String[] l = new String[] { "a", "b", "c", "d" };
    List<String> data = Arrays.asList(l);
    Dataset<String> ds = spark.createDataset(data, Encoders.STRING());
    Dataset<Row> df = ds.toDF();
    df.show();
}
 
开发者ID:jgperrin,项目名称:net.jgp.labs.spark,代码行数:13,代码来源:ArrayToDataframeApp.java


示例7: start

import org.apache.spark.sql.Encoders; //导入依赖的package包/类
private void start() {		
	SparkSession spark = SparkSession.builder().master("local").getOrCreate();

	List<Integer> data = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
	Dataset<Integer> df = spark.createDataset(data, Encoders.INT());
	df.show();
	df.printSchema();
	Integer sumByReduce = df.reduce(new SumByReduce());
	System.out.println("Sum should be 55 and it is... " + sumByReduce);
}
 
开发者ID:jgperrin,项目名称:net.jgp.labs.spark,代码行数:11,代码来源:ReducerApp.java


示例8: start

import org.apache.spark.sql.Encoders; //导入依赖的package包/类
private void start() {
	SparkSession spark = SparkSession.builder().appName("CSV to Dataset<Book>").master("local").getOrCreate();

	String filename = "data/books.csv";
	Dataset<Row> df = spark.read().format("csv").option("inferSchema", "true").option("header", "true")
			.load(filename);
	df.show();

	Dataset<Book> bookDf = df.map(new BookMapper(), Encoders.bean(Book.class));
	bookDf.show();
}
 
开发者ID:jgperrin,项目名称:net.jgp.labs.spark,代码行数:12,代码来源:CsvToDatasetBook.java


示例9: start

import org.apache.spark.sql.Encoders; //导入依赖的package包/类
private void start() {
	SparkSession spark = SparkSession.builder().appName("CSV to Dataset<Book> as JSON").master("local").getOrCreate();

	String filename = "data/books.csv";
	Dataset<Row> df = spark.read().format("csv").option("inferSchema", "true").option("header", "true")
			.load(filename);
	df.show();

	Dataset<String> bookDf = df.map(new BookMapper(), Encoders.STRING());
	bookDf.show(20,132);

	Dataset<Row> bookAsJsonDf = spark.read().json(bookDf);
	bookAsJsonDf.show();
}
 
开发者ID:jgperrin,项目名称:net.jgp.labs.spark,代码行数:15,代码来源:CsvToDatasetBookAsJson.java


示例10: start

import org.apache.spark.sql.Encoders; //导入依赖的package包/类
private void start() {
	SparkSession spark = SparkSession.builder().appName("Book URL Builder").master("local").getOrCreate();

	String filename = "data/books.csv";
	Dataset<Row> df = spark.read().format("csv").option("inferSchema", "true").option("header", "true")
			.load(filename);
	df.show();

	Dataset<String> ds = df.map(new BookUrlBuilder(), Encoders.STRING());
	ds.printSchema();
	ds.show(20, 80);
}
 
开发者ID:jgperrin,项目名称:net.jgp.labs.spark,代码行数:13,代码来源:BookUrlBuilderApp.java


示例11: test0FailOnIndexCreationDisabled

import org.apache.spark.sql.Encoders; //导入依赖的package包/类
@Test(expected = EsHadoopIllegalArgumentException.class)
public void test0FailOnIndexCreationDisabled() throws Exception {
    String target = wrapIndex("test-nonexisting/data");
    JavaStreamingQueryTestHarness<RecordBean> test = new JavaStreamingQueryTestHarness<>(spark, Encoders.bean(RecordBean.class));

    RecordBean doc1 = new RecordBean();
    doc1.setId(1);
    doc1.setName("Spark");

    RecordBean doc2 = new RecordBean();
    doc2.setId(2);
    doc2.setName("Hadoop");

    RecordBean doc3 = new RecordBean();
    doc3.setId(3);
    doc3.setName("YARN");

    Dataset<RecordBean> dataset = test
            .withInput(doc1)
            .withInput(doc2)
            .withInput(doc3)
            .expectingToThrow(EsHadoopIllegalArgumentException.class)
            .stream();

    test.run(
            dataset.writeStream()
                    .option("checkpointLocation", checkpoint(target))
                    .option(ES_INDEX_AUTO_CREATE, "no")
                    .format("es"),
            target
    );

    assertTrue(!RestUtils.exists(target));
}
 
开发者ID:elastic,项目名称:elasticsearch-hadoop,代码行数:35,代码来源:AbstractJavaEsSparkStructuredStreamingTest.java


示例12: test1BasicWrite

import org.apache.spark.sql.Encoders; //导入依赖的package包/类
@Test
public void test1BasicWrite() throws Exception {
    String target = wrapIndex("test-write/data");
    JavaStreamingQueryTestHarness<RecordBean> test = new JavaStreamingQueryTestHarness<>(spark, Encoders.bean(RecordBean.class));

    RecordBean doc1 = new RecordBean();
    doc1.setId(1);
    doc1.setName("Spark");

    RecordBean doc2 = new RecordBean();
    doc2.setId(2);
    doc2.setName("Hadoop");

    RecordBean doc3 = new RecordBean();
    doc3.setId(3);
    doc3.setName("YARN");

    Dataset<RecordBean> dataset = test
            .withInput(doc1)
            .withInput(doc2)
            .withInput(doc3)
            .stream();

    test.run(
            dataset.writeStream()
                    .option("checkpointLocation", checkpoint(target))
                    .format("es"),
            target
    );

    assertTrue(RestUtils.exists(target));
    assertThat(RestUtils.get(target + "/_search?"), containsString("Spark"));
    assertThat(RestUtils.get(target + "/_search?"), containsString("Hadoop"));
    assertThat(RestUtils.get(target + "/_search?"), containsString("YARN"));
}
 
开发者ID:elastic,项目名称:elasticsearch-hadoop,代码行数:36,代码来源:AbstractJavaEsSparkStructuredStreamingTest.java


示例13: test1WriteWithMappingId

import org.apache.spark.sql.Encoders; //导入依赖的package包/类
@Test
public void test1WriteWithMappingId() throws Exception {
    String target = wrapIndex("test-write-id/data");
    JavaStreamingQueryTestHarness<RecordBean> test = new JavaStreamingQueryTestHarness<>(spark, Encoders.bean(RecordBean.class));

    RecordBean doc1 = new RecordBean();
    doc1.setId(1);
    doc1.setName("Spark");

    RecordBean doc2 = new RecordBean();
    doc2.setId(2);
    doc2.setName("Hadoop");

    RecordBean doc3 = new RecordBean();
    doc3.setId(3);
    doc3.setName("YARN");

    Dataset<RecordBean> dataset = test
            .withInput(doc1)
            .withInput(doc2)
            .withInput(doc3)
            .stream();

    test.run(
            dataset.writeStream()
                    .option("checkpointLocation", checkpoint(target))
                    .option("es.mapping.id", "id")
                    .format("es"),
            target
    );

    assertEquals(3, JavaEsSpark.esRDD(new JavaSparkContext(spark.sparkContext()), target).count());
    assertTrue(RestUtils.exists(target + "/1"));
    assertTrue(RestUtils.exists(target + "/2"));
    assertTrue(RestUtils.exists(target + "/3"));

    assertThat(RestUtils.get(target + "/_search?"), containsString("Spark"));
}
 
开发者ID:elastic,项目名称:elasticsearch-hadoop,代码行数:39,代码来源:AbstractJavaEsSparkStructuredStreamingTest.java


示例14: test1WriteWithMappingExclude

import org.apache.spark.sql.Encoders; //导入依赖的package包/类
@Test
public void test1WriteWithMappingExclude() throws Exception {
    String target = wrapIndex("test-mapping-exclude/data");
    JavaStreamingQueryTestHarness<RecordBean> test = new JavaStreamingQueryTestHarness<>(spark, Encoders.bean(RecordBean.class));

    RecordBean doc1 = new RecordBean();
    doc1.setId(1);
    doc1.setName("Spark");

    RecordBean doc2 = new RecordBean();
    doc2.setId(2);
    doc2.setName("Hadoop");

    RecordBean doc3 = new RecordBean();
    doc3.setId(3);
    doc3.setName("YARN");

    Dataset<RecordBean> dataset = test
            .withInput(doc1)
            .withInput(doc2)
            .withInput(doc3)
            .stream();

    test.run(
            dataset.writeStream()
                    .option("checkpointLocation", checkpoint(target))
                    .option(ES_MAPPING_EXCLUDE, "name")
                    .format("es"),
            target
    );

    assertTrue(RestUtils.exists(target));
    assertThat(RestUtils.get(target + "/_search?"), not(containsString("Spark")));
    assertThat(RestUtils.get(target +  "/_search?"), not(containsString("Hadoop")));
    assertThat(RestUtils.get(target +  "/_search?"), not(containsString("YARN")));
}
 
开发者ID:elastic,项目名称:elasticsearch-hadoop,代码行数:37,代码来源:AbstractJavaEsSparkStructuredStreamingTest.java


示例15: test1MultiIndexWrite

import org.apache.spark.sql.Encoders; //导入依赖的package包/类
@Test
public void test1MultiIndexWrite() throws Exception {
    String target = wrapIndex("test-write-tech-{name}/data");
    JavaStreamingQueryTestHarness<RecordBean> test = new JavaStreamingQueryTestHarness<>(spark, Encoders.bean(RecordBean.class));

    RecordBean doc1 = new RecordBean();
    doc1.setId(1);
    doc1.setName("spark");

    RecordBean doc2 = new RecordBean();
    doc2.setId(2);
    doc2.setName("hadoop");

    Dataset<RecordBean> dataset = test
            .withInput(doc1)
            .withInput(doc2)
            .stream();

    test.run(
            dataset.writeStream()
                    .option("checkpointLocation", checkpoint(target))
                    .format("es"),
            target
    );

    assertTrue(RestUtils.exists(wrapIndex("test-write-tech-spark/data")));
    assertTrue(RestUtils.exists(wrapIndex("test-write-tech-hadoop/data")));

    assertThat(RestUtils.get(wrapIndex("test-write-tech-spark/data/_search?")), containsString("\"name\":\"spark\""));
    assertThat(RestUtils.get(wrapIndex("test-write-tech-hadoop/data/_search?")), containsString("\"name\":\"hadoop\""));
}
 
开发者ID:elastic,项目名称:elasticsearch-hadoop,代码行数:32,代码来源:AbstractJavaEsSparkStructuredStreamingTest.java


示例16: main

import org.apache.spark.sql.Encoders; //导入依赖的package包/类
public static void main(String[] args) {
	//Window Specific property if Hadoop is not instaalled or HADOOP_HOME is not set
	 System.setProperty("hadoop.home.dir", "E:\\hadoop");
	
	 //Build a Spark Session	
      SparkSession sparkSession = SparkSession
      .builder()
      .master("local")
	  .config("spark.sql.warehouse.dir","file:///E:/hadoop/warehouse")
      .appName("EdgeBuilder")
      .getOrCreate();
      Logger rootLogger = LogManager.getRootLogger();
	  rootLogger.setLevel(Level.WARN); 
	// Read the CSV data
		 Dataset<Row> emp_ds = sparkSession.read()
				 .format("com.databricks.spark.csv")
   		         .option("header", "true")
   		         .option("inferSchema", "true")
   		         .load("src/main/resources/employee.txt");    
    		
	    UDF2 calcDays=new CalcDaysUDF();
	  //Registering the UDFs in Spark Session created above      
	    sparkSession.udf().register("calcDays", calcDays, DataTypes.LongType);
	    
	    emp_ds.createOrReplaceTempView("emp_ds");
	    
	    emp_ds.printSchema();
	    emp_ds.show();
	    
	    sparkSession.sql("select calcDays(hiredate,'dd-MM-yyyy') from emp_ds").show();   
	    //Instantiate UDAF
	    AverageUDAF calcAvg= new AverageUDAF();
	    //Register UDAF to SparkSession
	    sparkSession.udf().register("calAvg", calcAvg);
	    //Use UDAF
	    sparkSession.sql("select deptno,calAvg(salary) from emp_ds group by deptno ").show(); 
	   
	    //
	    TypeSafeUDAF typeSafeUDAF=new TypeSafeUDAF();
	    
	    Dataset<Employee> emf = emp_ds.as(Encoders.bean(Employee.class));
	    emf.printSchema();
	    emf.show();
	    
	    TypedColumn<Employee, Double> averageSalary = typeSafeUDAF.toColumn().name("averageTypeSafe");
	    Dataset<Double> result = emf.select(averageSalary);
	   result.show();
	    

}
 
开发者ID:PacktPublishing,项目名称:Apache-Spark-2x-for-Java-Developers,代码行数:51,代码来源:UDFExample.java


示例17: bufferEncoder

import org.apache.spark.sql.Encoders; //导入依赖的package包/类
public Encoder<Average> bufferEncoder() {
	return Encoders.bean(Average.class);
}
 
开发者ID:PacktPublishing,项目名称:Apache-Spark-2x-for-Java-Developers,代码行数:4,代码来源:TypeSafeUDAF.java


示例18: outputEncoder

import org.apache.spark.sql.Encoders; //导入依赖的package包/类
public Encoder<Double> outputEncoder() {
	return Encoders.DOUBLE();
}
 
开发者ID:PacktPublishing,项目名称:Apache-Spark-2x-for-Java-Developers,代码行数:4,代码来源:TypeSafeUDAF.java


示例19: main

import org.apache.spark.sql.Encoders; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
//Read properties
Properties prop = PropertyFileReader.readPropertyFile();

//SparkSesion
SparkSession spark = SparkSession
	      .builder()
	      .appName("VideoStreamProcessor")
	      .master(prop.getProperty("spark.master.url"))
	      .getOrCreate();	

//directory to save image files with motion detected
final String processedImageDir = prop.getProperty("processed.output.dir");
logger.warn("Output directory for saving processed images is set to "+processedImageDir+". This is configured in processed.output.dir key of property file.");

//create schema for json message
StructType schema =  DataTypes.createStructType(new StructField[] { 
		DataTypes.createStructField("cameraId", DataTypes.StringType, true),
		DataTypes.createStructField("timestamp", DataTypes.TimestampType, true),
		DataTypes.createStructField("rows", DataTypes.IntegerType, true),
		DataTypes.createStructField("cols", DataTypes.IntegerType, true),
		DataTypes.createStructField("type", DataTypes.IntegerType, true),
		DataTypes.createStructField("data", DataTypes.StringType, true)
		});


//Create DataSet from stream messages from kafka
   Dataset<VideoEventData> ds = spark
     .readStream()
     .format("kafka")
     .option("kafka.bootstrap.servers", prop.getProperty("kafka.bootstrap.servers"))
     .option("subscribe", prop.getProperty("kafka.topic"))
     .option("kafka.max.partition.fetch.bytes", prop.getProperty("kafka.max.partition.fetch.bytes"))
     .option("kafka.max.poll.records", prop.getProperty("kafka.max.poll.records"))
     .load()
     .selectExpr("CAST(value AS STRING) as message")
     .select(functions.from_json(functions.col("message"),schema).as("json"))
     .select("json.*")
     .as(Encoders.bean(VideoEventData.class)); 
   
   //key-value pair of cameraId-VideoEventData
KeyValueGroupedDataset<String, VideoEventData> kvDataset = ds.groupByKey(new MapFunction<VideoEventData, String>() {
	@Override
	public String call(VideoEventData value) throws Exception {
		return value.getCameraId();
	}
}, Encoders.STRING());
	
//process
Dataset<VideoEventData> processedDataset = kvDataset.mapGroupsWithState(new MapGroupsWithStateFunction<String, VideoEventData, VideoEventData,VideoEventData>(){
	@Override
	public VideoEventData call(String key, Iterator<VideoEventData> values, GroupState<VideoEventData> state) throws Exception {
		logger.warn("CameraId="+key+" PartitionId="+TaskContext.getPartitionId());
		VideoEventData existing = null;
		//check previous state
		if (state.exists()) {
			existing = state.get();
		}
		//detect motion
		VideoEventData processed = VideoMotionDetector.detectMotion(key,values,processedImageDir,existing);
		
		//update last processed
		if(processed != null){
			state.update(processed);
		}
		return processed;
	}}, Encoders.bean(VideoEventData.class), Encoders.bean(VideoEventData.class));

//start
 StreamingQuery query = processedDataset.writeStream()
	      .outputMode("update")
	      .format("console")
	      .start();
 
 //await
    query.awaitTermination();
}
 
开发者ID:baghelamit,项目名称:video-stream-analytics,代码行数:78,代码来源:VideoStreamProcessor.java


示例20: main

import org.apache.spark.sql.Encoders; //导入依赖的package包/类
public static void main(String[] args) throws StreamingQueryException {
    //set log4j programmatically
    LogManager.getLogger("org.apache.spark").setLevel(Level.WARN);
    LogManager.getLogger("akka").setLevel(Level.ERROR);

    //configure Spark
    SparkConf conf = new SparkConf()
            .setAppName("kafka-structured")
            .setMaster("local[*]");

    //initialize spark session
    SparkSession sparkSession = SparkSession
            .builder()
            .config(conf)
            .getOrCreate();

    //reduce task number
    sparkSession.sqlContext().setConf("spark.sql.shuffle.partitions", "3");

    //data stream from kafka
    Dataset<Row> ds1 = sparkSession
            .readStream()
            .format("kafka")
            .option("kafka.bootstrap.servers", "localhost:9092")
            .option("subscribe", "mytopic")
            .option("startingOffsets", "earliest")
            .load();

    //start the streaming query
    sparkSession.udf().register("deserialize", (byte[] data) -> {
        GenericRecord record = recordInjection.invert(data).get();
        return RowFactory.create(record.get("str1").toString(), record.get("str2").toString(), record.get("int1"));

    }, DataTypes.createStructType(type.fields()));
    ds1.printSchema();
    Dataset<Row> ds2 = ds1
            .select("value").as(Encoders.BINARY())
            .selectExpr("deserialize(value) as rows")
            .select("rows.*");

    ds2.printSchema();

    StreamingQuery query1 = ds2
            .groupBy("str1")
            .count()
            .writeStream()
            .queryName("Test query")
            .outputMode("complete")
            .format("console")
            .start();

    query1.awaitTermination();

}
 
开发者ID:Neuw84,项目名称:structured-streaming-avro-demo,代码行数:55,代码来源:StructuredDemo.java



注:本文中的org.apache.spark.sql.Encoders类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Java BehaviorRelay类代码示例发布时间:2022-05-22
下一篇:
Java FixedAuthoritiesExtractor类代码示例发布时间:2022-05-22
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap