• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Java Beta类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Java中org.apache.commons.math3.special.Beta的典型用法代码示例。如果您正苦于以下问题:Java Beta类的具体用法?Java Beta怎么用?Java Beta使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



Beta类属于org.apache.commons.math3.special包,在下文中一共展示了Beta类的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Java代码示例。

示例1: cumulativeProbability

import org.apache.commons.math3.special.Beta; //导入依赖的package包/类
/** {@inheritDoc} */
public double cumulativeProbability(double x) {
    double ret;
    if (x == 0) {
        ret = 0.5;
    } else {
        double t =
            Beta.regularizedBeta(
                degreesOfFreedom / (degreesOfFreedom + (x * x)),
                0.5 * degreesOfFreedom,
                0.5);
        if (x < 0.0) {
            ret = 0.5 * t;
        } else {
            ret = 1.0 - 0.5 * t;
        }
    }

    return ret;
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:21,代码来源:TDistribution.java


示例2: initialMinorFractions

import org.apache.commons.math3.special.Beta; //导入依赖的package包/类
/**
 *  Initialize minor fractions assuming no allelic bias <p></p>
 *
 * We integrate over f to get posterior probabilities (responsibilities) of alt / ref minor
 * that is, responsibility of alt minor is int_{0 to 1/2} f^a (1-f)^r df
 *          responsibility of ref minor is int_{0 to 1/2} f^r (1-f)^a df
 * these are proportional to I(1/2, a + 1, r + 1) and I(1/2, r + 1, a + 1),
 * respectively, where I is the (incomplete) regularized Beta function.
 * By definition these likelihoods sum to 1, ie they are already normalized. <p></p>
 *
 * Finally, we set each minor fraction to the responsibility-weighted total count of
 * reads in minor allele divided by total reads, ignoring outliers.
 */
private AlleleFractionState.MinorFractions initialMinorFractions(final AlleleFractionData data) {
    final int numSegments = data.getNumSegments();
    final AlleleFractionState.MinorFractions result = new AlleleFractionState.MinorFractions(numSegments);
    for (int segment = 0; segment < numSegments; segment++) {
        double responsibilityWeightedMinorAlleleReadCount = 0.0;
        double responsibilityWeightedTotalReadCount = 0.0;
        for (final AllelicCount count : data.getCountsInSegment(segment)) {
            final int a = count.getAltReadCount();
            final int r = count.getRefReadCount();
            double altMinorResponsibility;
            try {
                altMinorResponsibility = Beta.regularizedBeta(0.5, a + 1, r + 1);
            } catch (final MaxCountExceededException e) {
                altMinorResponsibility = a < r ? 1.0 : 0.0; //if the special function can't be computed, give an all-or-nothing responsibility
            }
            responsibilityWeightedMinorAlleleReadCount += altMinorResponsibility * a + (1 - altMinorResponsibility) * r;
            responsibilityWeightedTotalReadCount += a + r;
        }

        // we achieve a flat prior via a single pseudocount for minor and non-minor reads, hence the  +1 and +2
        result.add((responsibilityWeightedMinorAlleleReadCount + 1)/(responsibilityWeightedTotalReadCount + 2));
    }
    return result;
}
 
开发者ID:broadinstitute,项目名称:gatk-protected,代码行数:38,代码来源:AlleleFractionInitializer.java


示例3: calculateInitialMinorFractions

import org.apache.commons.math3.special.Beta; //导入依赖的package包/类
/**
 * <p>
 *     Initialize minor fractions assuming no allelic bias.
 * </p>
 *
 * <p>
 *     We integrate over f to get posterior probabilities (responsibilities) of alt / ref minor
 *     that is, responsibility of alt minor is int_{0 to 1/2} f^a (1 - f)^r df
 *              responsibility of ref minor is int_{0 to 1/2} f^r (1 - f)^a df
 *     These are proportional to I(1/2, a + 1, r + 1) and I(1/2, r + 1, a + 1),
 *     respectively, where I is the (incomplete) regularized Beta function.
 *     By definition, these likelihoods sum to 1, i.e., they are already normalized.
 * </p>
 *
 * <p>
 *     Finally, we set each minor fraction to the responsibility-weighted total count of
 *     reads in minor allele divided by total reads, ignoring outliers.
 * </p>
 */
private AlleleFractionState.MinorFractions calculateInitialMinorFractions(final AlleleFractionSegmentedData data) {
    final int numSegments = data.getNumSegments();
    final AlleleFractionState.MinorFractions result = new AlleleFractionState.MinorFractions(numSegments);
    for (int segment = 0; segment < numSegments; segment++) {
        double responsibilityWeightedMinorAlleleReadCount = 0.0;
        double responsibilityWeightedTotalReadCount = 0.0;
        for (final AllelicCount count : data.getIndexedAllelicCountsInSegment(segment)) {
            final int a = count.getAltReadCount();
            final int r = count.getRefReadCount();
            double altMinorResponsibility;
            try {
                altMinorResponsibility = Beta.regularizedBeta(0.5, a + 1, r + 1);
            } catch (final MaxCountExceededException e) {
                altMinorResponsibility = a < r ? 1.0 : 0.0; //if the special function can't be computed, give an all-or-nothing responsibility
            }
            responsibilityWeightedMinorAlleleReadCount += altMinorResponsibility * a + (1 - altMinorResponsibility) * r;
            responsibilityWeightedTotalReadCount += a + r;
        }

        // we achieve a flat prior via a single pseudocount for minor and non-minor reads, hence the  +1 and +2
        result.add((responsibilityWeightedMinorAlleleReadCount + 1)/(responsibilityWeightedTotalReadCount + 2));
    }
    return result;
}
 
开发者ID:broadinstitute,项目名称:gatk,代码行数:44,代码来源:AlleleFractionInitializer.java


示例4: logDensity

import org.apache.commons.math3.special.Beta; //导入依赖的package包/类
/** {@inheritDoc} **/
@Override
public double logDensity(double x) {
    final double nhalf = numeratorDegreesOfFreedom / 2;
    final double mhalf = denominatorDegreesOfFreedom / 2;
    final double logx = FastMath.log(x);
    final double logn = FastMath.log(numeratorDegreesOfFreedom);
    final double logm = FastMath.log(denominatorDegreesOfFreedom);
    final double lognxm = FastMath.log(numeratorDegreesOfFreedom * x +
            denominatorDegreesOfFreedom);
    return nhalf * logn + nhalf * logx - logx +
           mhalf * logm - nhalf * lognxm - mhalf * lognxm -
           Beta.logBeta(nhalf, mhalf);
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:15,代码来源:FDistribution.java


示例5: cumulativeProbability

import org.apache.commons.math3.special.Beta; //导入依赖的package包/类
/**
 * {@inheritDoc}
 *
 * The implementation of this method is based on
 * <ul>
 *  <li>
 *   <a href="http://mathworld.wolfram.com/F-Distribution.html">
 *   F-Distribution</a>, equation (4).
 *  </li>
 * </ul>
 */
public double cumulativeProbability(double x)  {
    double ret;
    if (x <= 0) {
        ret = 0;
    } else {
        double n = numeratorDegreesOfFreedom;
        double m = denominatorDegreesOfFreedom;

        ret = Beta.regularizedBeta((n * x) / (m + n * x),
            0.5 * n,
            0.5 * m);
    }
    return ret;
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:26,代码来源:FDistribution.java


示例6: cumulativeProbability

import org.apache.commons.math3.special.Beta; //导入依赖的package包/类
/** {@inheritDoc} */
public double cumulativeProbability(double x)  {
    if (x <= 0) {
        return 0;
    } else if (x >= 1) {
        return 1;
    } else {
        return Beta.regularizedBeta(x, alpha, beta);
    }
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:11,代码来源:BetaDistribution.java


示例7: cumulativeProbability

import org.apache.commons.math3.special.Beta; //导入依赖的package包/类
/** {@inheritDoc} */
public double cumulativeProbability(int x) {
    double ret;
    if (x < 0) {
        ret = 0.0;
    } else if (x >= numberOfTrials) {
        ret = 1.0;
    } else {
        ret = 1.0 - Beta.regularizedBeta(probabilityOfSuccess,
                x + 1.0, numberOfTrials - x);
    }
    return ret;
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:14,代码来源:BinomialDistribution.java


示例8: cumulativeProbability

import org.apache.commons.math3.special.Beta; //导入依赖的package包/类
/** {@inheritDoc} */
public double cumulativeProbability(int x) {
    double ret;
    if (x < 0) {
        ret = 0.0;
    } else {
        ret = Beta.regularizedBeta(probabilityOfSuccess,
                numberOfSuccesses, x + 1.0);
    }
    return ret;
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:12,代码来源:PascalDistribution.java


示例9: density

import org.apache.commons.math3.special.Beta; //导入依赖的package包/类
/**
 * {@inheritDoc}
 *
 * @since 2.1
 */
public double density(double x) {
    final double nhalf = numeratorDegreesOfFreedom / 2;
    final double mhalf = denominatorDegreesOfFreedom / 2;
    final double logx = FastMath.log(x);
    final double logn = FastMath.log(numeratorDegreesOfFreedom);
    final double logm = FastMath.log(denominatorDegreesOfFreedom);
    final double lognxm = FastMath.log(numeratorDegreesOfFreedom * x +
                                       denominatorDegreesOfFreedom);
    return FastMath.exp(nhalf * logn + nhalf * logx - logx +
                        mhalf * logm - nhalf * lognxm - mhalf * lognxm -
                        Beta.logBeta(nhalf, mhalf));
}
 
开发者ID:golharam,项目名称:FastQC,代码行数:18,代码来源:FDistribution.java


示例10: cumulativeProbability

import org.apache.commons.math3.special.Beta; //导入依赖的package包/类
/** {@inheritDoc} */
public double cumulativeProbability(int x) {
    double ret;
    if (x < 0) {
        ret = 0.0;
    } else {
        ret = Beta.regularizedBeta(probabilityOfSuccess,
                numberOfSuccesses, x + 1);
    }
    return ret;
}
 
开发者ID:golharam,项目名称:FastQC,代码行数:12,代码来源:PascalDistribution.java



注:本文中的org.apache.commons.math3.special.Beta类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Java Measurement类代码示例发布时间:2022-05-22
下一篇:
Java JMeterContext类代码示例发布时间:2022-05-22
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap