• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Java MaxIter类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Java中org.apache.commons.math3.optim.MaxIter的典型用法代码示例。如果您正苦于以下问题:Java MaxIter类的具体用法?Java MaxIter怎么用?Java MaxIter使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



MaxIter类属于org.apache.commons.math3.optim包,在下文中一共展示了MaxIter类的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Java代码示例。

示例1: solve

import org.apache.commons.math3.optim.MaxIter; //导入依赖的package包/类
public void solve(ActionEvent actionEvent) {
    disableControls();
    try{
        solver=new SimplexSolver(1e-6);
        LinearObjectiveFunction function=setObjective();
        Collection<LinearConstraint> constraints=setConstrains();
        PointValuePair result = solver.optimize(new MaxIter(1000000),function,new LinearConstraintSet(constraints), GoalType.MINIMIZE,new NonNegativeConstraint(true));
        retrieveResults(result);
    }catch(Exception e)
    {
        Alert alert=new Alert(Alert.AlertType.ERROR);
        alert.setHeaderText("Optimization failed due to error");
        alert.setContentText(e.getMessage());
        alert.showAndWait();
        e.printStackTrace();
    }
    enableControls();
}
 
开发者ID:superdurszlak,项目名称:Transport-Production-Issue,代码行数:19,代码来源:Controller.java


示例2: optimize

import org.apache.commons.math3.optim.MaxIter; //导入依赖的package包/类
/**
 * Optimizes parameters using the Nelder-Mead Method
 * @param initialGuess initial guess / state required for Nelder-Mead-Method
 * @param costFunction which defines that the Mean Squared Error has to be minimized
 * @return the optimized values
 */
private static double[] optimize(double[] initialGuess, MultivariateFunctionMappingAdapter costFunction) {
    double[] result;

    SimplexOptimizer optimizer = new SimplexOptimizer(simplexRelativeThreshold, simplexAbsoluteThreshold);

    PointValuePair unBoundedResult = optimizer.optimize(
            GoalType.MINIMIZE,
            new MaxIter(MAX_ALLOWED_NUMBER_OF_ITERATION),
            new MaxEval(MAX_ALLOWED_NUMBER_OF_EVALUATION),
            new InitialGuess(initialGuess),
            new ObjectiveFunction(costFunction),
            new NelderMeadSimplex(initialGuess.length));

    result = costFunction.unboundedToBounded(unBoundedResult.getPoint());
    return result;
}
 
开发者ID:lidox,项目名称:reaction-test,代码行数:23,代码来源:NelderMeadOptimizer.java


示例3: optimize

import org.apache.commons.math3.optim.MaxIter; //导入依赖的package包/类
private PointValuePair optimize(final MultivariateOptimizer optimizer, final double[] initialValues,
		final OptimizationData... data) {
	final OptimizationData[] d = new OptimizationData[5 + data.length];
	d[0] = new MaxIter(convergence.maxIt + 1);
	d[1] = new MaxEval(convergence.maxIt * 2);
	d[2] = new ObjectiveFunction(this);
	d[3] = GoalType.MAXIMIZE;
	d[4] = new InitialGuess(fixBounds(initialValues));
	for (int i = 0; i < data.length; ++i) {
		d[5 + i] = data[i];
	}
	return optimizer.optimize(d);
}
 
开发者ID:ProfilingIO,项目名称:insight-ml,代码行数:14,代码来源:AbstractOptimizable.java


示例4: testMath930

import org.apache.commons.math3.optim.MaxIter; //导入依赖的package包/类
@Test
public void testMath930() {
    Collection<LinearConstraint> constraints = createMath930Constraints();
    
    double[] objFunctionCoeff = new double[33];
    objFunctionCoeff[3] = 1;
    LinearObjectiveFunction f = new LinearObjectiveFunction(objFunctionCoeff, 0);
    SimplexSolver solver = new SimplexSolver(1e-4, 10, 1e-6);
    
    PointValuePair solution = solver.optimize(new MaxIter(1000), f, new LinearConstraintSet(constraints),
                                              GoalType.MINIMIZE, new NonNegativeConstraint(true));
    Assert.assertEquals(0.3752298, solution.getValue(), 1e-4);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:14,代码来源:SimplexSolverTest.java


示例5: testSolutionCallback

import org.apache.commons.math3.optim.MaxIter; //导入依赖的package包/类
@Test
public void testSolutionCallback() {
    // re-use the problem from testcase for MATH-288
    // it normally requires 5 iterations
    
    LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] { 7, 3, 0, 0 }, 0 );

    List<LinearConstraint> constraints = new ArrayList<LinearConstraint>();
    constraints.add(new LinearConstraint(new double[] { 3, 0, -5, 0 }, Relationship.LEQ, 0.0));
    constraints.add(new LinearConstraint(new double[] { 2, 0, 0, -5 }, Relationship.LEQ, 0.0));
    constraints.add(new LinearConstraint(new double[] { 0, 3, 0, -5 }, Relationship.LEQ, 0.0));
    constraints.add(new LinearConstraint(new double[] { 1, 0, 0, 0 }, Relationship.LEQ, 1.0));
    constraints.add(new LinearConstraint(new double[] { 0, 1, 0, 0 }, Relationship.LEQ, 1.0));

    final SimplexSolver solver = new SimplexSolver();
    final SolutionCallback callback = new SolutionCallback();
    
    Assert.assertNull(callback.getSolution());
    Assert.assertFalse(callback.isSolutionOptimal());

    try {
        solver.optimize(new MaxIter(3), f, new LinearConstraintSet(constraints),
                        GoalType.MAXIMIZE, new NonNegativeConstraint(true), callback);
        Assert.fail("expected TooManyIterationsException");
    } catch (TooManyIterationsException ex) {
        // expected
    }
    
    final PointValuePair solution = callback.getSolution();
    Assert.assertNotNull(solution);
    Assert.assertTrue(validSolution(solution, constraints, 1e-4));
    Assert.assertFalse(callback.isSolutionOptimal());
    // the solution is clearly not optimal: optimal = 10.0
    Assert.assertEquals(7.0, solution.getValue(), 1e-4);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:36,代码来源:SimplexSolverTest.java


示例6: computeFitnessValue

import org.apache.commons.math3.optim.MaxIter; //导入依赖的package包/类
private void computeFitnessValue()
{
    fitnessValueSolution = new SimplexSolver()
            .optimize(new MaxIter(500),
                    f,
                    new LinearConstraintSet(getConstraints()),
                    GoalType.MINIMIZE,
                    new NonNegativeConstraint(true));
}
 
开发者ID:Polytech-AdrienCastex,项目名称:2D-Cutting-Stock-Problem-with-Setup-Cost,代码行数:10,代码来源:Solution.java


示例7: simplexDouble

import org.apache.commons.math3.optim.MaxIter; //导入依赖的package包/类
/**
     * 
     * @param A ресурсы на выпуск всех товаров (юнитов) [номер ресурса][номер юнита]
     * @param b предел ресурсов (ограничение)
     * @param c выгода
     * @param x out кол-во выпуска (план выпуска, ответ)
     * @return суммарная выгода плана x
     */
public static double simplexDouble(double[][] A, double[] b, double[] c, double[] x) {
      
//    return justOneMaximize(A,b,c, x); // maybe fast, but not precission
    
    // - - -
    LinearObjectiveFunction f = new LinearObjectiveFunction(c, 0); // !!!

    ArrayList<LinearConstraint> constraints = new ArrayList<LinearConstraint>();
    for(int i=0; i<A.length; i++) { // Ограничения
        constraints.add( new LinearConstraint(A[i], Relationship.LEQ, b[i]) ); // _c[i]*x[i]<=V_Res[i]
        double[] zeroV = new double[A[i].length];
        Arrays.fill(zeroV, 0);
        constraints.add( new LinearConstraint(zeroV, Relationship.GEQ, 0) ); // _c[i]*x[i]<=V_Res[i]
    }
    // TODO при переработке энергии в металл можно учесть с помощью двух переменных и ограничения!!!

    // FIXME precission - do not use between 0.00001 and 1.0, only 1,2,3...
    SimplexSolver solver = new SimplexSolver();
    PointValuePair optSolution = solver.optimize(new MaxIter(1000), f,
            new LinearConstraintSet(constraints),
            GoalType.MAXIMIZE,
            new NonNegativeConstraint(true));

    //double[] solution = optSolution.getPoint();
    double[] x_=optSolution.getPointRef(); // TODO it is bad fix for n*1.0. To do iteration.
    for (int i=0;i<x_.length;i++) if (x_[i]>0) x_[i]=Math.round(x_[i]-0.5);

    System.arraycopy(x_, 0, x, 0, x.length);
    return optSolution.getValue();
    // - - -    
}
 
开发者ID:playerO1,项目名称:FieldBOT,代码行数:40,代码来源:MathOptimizationMethods.java


示例8: optimize

import org.apache.commons.math3.optim.MaxIter; //导入依赖的package包/类
@Override
public Result optimize(int nParameterSpace, int nOptimizations, boolean stopWhenSuccessful,
		Map<String, Double> minStartValues, Map<String, Double> maxStartValues, int maxIterations,
		DoubleConsumer progessListener, ExecutionContext exec) throws CanceledExecutionException {
	if (exec != null) {
		exec.checkCanceled();
	}

	progessListener.accept(0.0);

	List<ParamRange> ranges = MathUtils.getParamRanges(parameters, minStartValues, maxStartValues, nParameterSpace);

	ranges.set(parameters.indexOf(sdParam), new ParamRange(1.0, 1, 1.0));

	List<StartValues> startValuesList = MathUtils.createStartValuesList(ranges, nOptimizations,
			values -> optimizerFunction.value(Doubles.toArray(values)),
			progress -> progessListener.accept(0.5 * progress), exec);
	Result result = new Result();
	AtomicInteger currentIteration = new AtomicInteger();
	SimplexOptimizer optimizer = new SimplexOptimizer(new SimpleValueChecker(1e-10, 1e-10) {

		@Override
		public boolean converged(int iteration, PointValuePair previous, PointValuePair current) {
			if (super.converged(iteration, previous, current)) {
				return true;
			}

			return currentIteration.incrementAndGet() >= maxIterations;
		}
	});
	int count = 0;

	for (StartValues startValues : startValuesList) {
		if (exec != null) {
			exec.checkCanceled();
		}

		progessListener.accept(0.5 * count++ / startValuesList.size() + 0.5);

		try {
			PointValuePair optimizerResults = optimizer.optimize(new MaxEval(Integer.MAX_VALUE),
					new MaxIter(maxIterations), new InitialGuess(Doubles.toArray(startValues.getValues())),
					new ObjectiveFunction(optimizerFunction), GoalType.MAXIMIZE,
					new NelderMeadSimplex(parameters.size()));
			double logLikelihood = optimizerResults.getValue() != null ? optimizerResults.getValue() : Double.NaN;

			if (result.logLikelihood == null || logLikelihood > result.logLikelihood) {
				result = getResults(optimizerResults);

				if (result.logLikelihood == 0.0 || stopWhenSuccessful) {
					break;
				}
			}
		} catch (TooManyEvaluationsException | TooManyIterationsException | ConvergenceException e) {
		}
	}

	return result;
}
 
开发者ID:SiLeBAT,项目名称:BfROpenLab,代码行数:60,代码来源:MultivariateOptimization.java


示例9: maximize

import org.apache.commons.math3.optim.MaxIter; //导入依赖的package包/类
/**
 * Maximizes a univariate function using a grid search followed by Brent's algorithm.
 *
 * @param fn the likelihood function to minimize
 * @param gridStart the lower bound for the grid search
 * @param gridEnd the upper bound for the grid search
 * @param gridStep step size for the grid search
 * @param relErr relative error tolerance for Brent's algorithm
 * @param absErr absolute error tolerance for Brent's algorithm
 * @param maxIter maximum # of iterations to perform in Brent's algorithm
 * @param maxEval maximum # of Likelihood function evaluations in Brent's algorithm
 *
 * @return the value of the parameter that maximizes the function
 */
public static double maximize(UnivariateFunction fn, double gridStart, double gridEnd,
    double gridStep, double relErr, double absErr, int maxIter, int maxEval) {
  Interval interval = gridSearch(fn, gridStart, gridEnd, gridStep);
  BrentOptimizer bo = new BrentOptimizer(relErr, absErr);
  UnivariatePointValuePair max = bo.optimize(
      new MaxIter(maxIter),
      new MaxEval(maxEval),
      new SearchInterval(interval.getInf(), interval.getSup()),
      new UnivariateObjectiveFunction(fn),
      GoalType.MAXIMIZE);
  return max.getPoint();
}
 
开发者ID:googlegenomics,项目名称:dataflow-java,代码行数:27,代码来源:Solver.java



注:本文中的org.apache.commons.math3.optim.MaxIter类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Java JRDesignStaticText类代码示例发布时间:2022-05-22
下一篇:
Java Service类代码示例发布时间:2022-05-22
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap