本文整理汇总了Java中org.nd4j.linalg.util.FeatureUtil类的典型用法代码示例。如果您正苦于以下问题:Java FeatureUtil类的具体用法?Java FeatureUtil怎么用?Java FeatureUtil使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
FeatureUtil类属于org.nd4j.linalg.util包,在下文中一共展示了FeatureUtil类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Java代码示例。
示例1: convertMat
import org.nd4j.linalg.util.FeatureUtil; //导入依赖的package包/类
public Pair<INDArray, opencv_core.Mat> convertMat(byte[] byteFeature) {
INDArray label = FeatureUtil.toOutcomeVector(byteFeature[0], NUM_LABELS);; // first value in the 3073 byte array
opencv_core.Mat image = new opencv_core.Mat(HEIGHT, WIDTH, CV_8UC(CHANNELS)); // feature are 3072
ByteBuffer imageData = image.createBuffer();
for (int i = 0; i < HEIGHT * WIDTH; i++) {
imageData.put(3 * i, byteFeature[i + 1 + 2 * HEIGHT * WIDTH]); // blue
imageData.put(3 * i + 1, byteFeature[i + 1 + HEIGHT * WIDTH]); // green
imageData.put(3 * i + 2, byteFeature[i + 1]); // red
}
// if (useSpecialPreProcessCifar) {
// image = convertCifar(image);
// }
return new Pair<>(label, image);
}
开发者ID:deeplearning4j,项目名称:DataVec,代码行数:17,代码来源:CifarLoader.java
示例2: testSplitTestAndTrain
import org.nd4j.linalg.util.FeatureUtil; //导入依赖的package包/类
@Test
public void testSplitTestAndTrain() throws Exception {
INDArray labels = FeatureUtil.toOutcomeMatrix(new int[] {0, 0, 0, 0, 0, 0, 0, 0}, 1);
DataSet data = new DataSet(Nd4j.rand(8, 1), labels);
SplitTestAndTrain train = data.splitTestAndTrain(6, new Random(1));
assertEquals(train.getTrain().getLabels().length(), 6);
SplitTestAndTrain train2 = data.splitTestAndTrain(6, new Random(1));
assertEquals(getFailureMessage(), train.getTrain().getFeatureMatrix(), train2.getTrain().getFeatureMatrix());
DataSet x0 = new IrisDataSetIterator(150, 150).next();
SplitTestAndTrain testAndTrain = x0.splitTestAndTrain(10);
assertArrayEquals(new int[] {10, 4}, testAndTrain.getTrain().getFeatureMatrix().shape());
assertEquals(x0.getFeatureMatrix().getRows(ArrayUtil.range(0, 10)), testAndTrain.getTrain().getFeatureMatrix());
assertEquals(x0.getLabels().getRows(ArrayUtil.range(0, 10)), testAndTrain.getTrain().getLabels());
}
开发者ID:deeplearning4j,项目名称:nd4j,代码行数:20,代码来源:DataSetTest.java
示例3: testStringListLabels
import org.nd4j.linalg.util.FeatureUtil; //导入依赖的package包/类
@Test
public void testStringListLabels() {
INDArray trueOutcome = FeatureUtil.toOutcomeVector(0, 2);
INDArray predictedOutcome = FeatureUtil.toOutcomeVector(0, 2);
List<String> labelsList = new ArrayList<>();
labelsList.add("hobbs");
labelsList.add("cal");
Evaluation eval = new Evaluation(labelsList);
eval.eval(trueOutcome, predictedOutcome);
assertEquals(1, eval.classCount(0));
assertEquals(labelsList.get(0), eval.getClassLabel(0));
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:17,代码来源:EvalTest.java
示例4: testStringHashLabels
import org.nd4j.linalg.util.FeatureUtil; //导入依赖的package包/类
@Test
public void testStringHashLabels() {
INDArray trueOutcome = FeatureUtil.toOutcomeVector(0, 2);
INDArray predictedOutcome = FeatureUtil.toOutcomeVector(0, 2);
Map<Integer, String> labelsMap = new HashMap<>();
labelsMap.put(0, "hobbs");
labelsMap.put(1, "cal");
Evaluation eval = new Evaluation(labelsMap);
eval.eval(trueOutcome, predictedOutcome);
assertEquals(1, eval.classCount(0));
assertEquals(labelsMap.get(0), eval.getClassLabel(0));
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:17,代码来源:EvalTest.java
示例5: convert
import org.nd4j.linalg.util.FeatureUtil; //导入依赖的package包/类
@Override
public DataSet convert(Collection<Collection<Writable>> records, int numLabels) {
//all but last label
DataSet ret = new DataSet(Nd4j.create(records.size(), records.iterator().next().size() - 1),
Nd4j.create(records.size(), numLabels));
// INDArray ret = Nd4j.create(records.size(),records.iterator().next().size() - 1);
int count = 0;
for (Collection<Writable> record : records) {
List<Writable> list;
if (record instanceof List) {
list = (List<Writable>) record;
} else
list = new ArrayList<>(record);
DataSet d = new DataSet(Nd4j.create(record.size() - 1),
FeatureUtil.toOutcomeVector(list.get(list.size() - 1).toInt(), numLabels));
ret.addRow(d, count++);
}
return ret;
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:23,代码来源:CSVRecordToDataSet.java
示例6: setOutcome
import org.nd4j.linalg.util.FeatureUtil; //导入依赖的package包/类
/**
* Sets the outcome of a particular example
* @param example the example to applyTransformToDestination
* @param label the label of the outcome
*/
@Override
public void setOutcome(int example, int label) {
if(example > numExamples())
throw new IllegalArgumentException("No example at " + example);
if(label > numOutcomes() || label < 0)
throw new IllegalArgumentException("Illegal label");
INDArray outcome = FeatureUtil.toOutcomeVector(label, numOutcomes());
getLabels().putRow(example,outcome);
}
开发者ID:wlin12,项目名称:JNN,代码行数:16,代码来源:DataSet.java
示例7: setOutcome
import org.nd4j.linalg.util.FeatureUtil; //导入依赖的package包/类
/**
* Sets the outcome of a particular example
*
* @param example the example to transform
* @param label the label of the outcome
*/
@Override
public void setOutcome(int example, int label) {
if (example > numExamples())
throw new IllegalArgumentException("No example at " + example);
if (label > numOutcomes() || label < 0)
throw new IllegalArgumentException("Illegal label");
INDArray outcome = FeatureUtil.toOutcomeVector(label, numOutcomes());
getLabels().putRow(example, outcome);
}
开发者ID:deeplearning4j,项目名称:nd4j,代码行数:17,代码来源:DataSet.java
示例8: getDataFor
import org.nd4j.linalg.util.FeatureUtil; //导入依赖的package包/类
public DataSet getDataFor(int i) {
File image = new File(images.get(i));
int outcome = outcomes.indexOf(image.getParentFile().getAbsolutePath());
try {
return new DataSet(loader.asRowVector(image), FeatureUtil.toOutcomeVector(outcome, outcomes.size()));
} catch (Exception e) {
throw new IllegalStateException("Unable to getFromOrigin data for image " + i + " for path " + images.get(i));
}
}
开发者ID:jpatanooga,项目名称:Canova,代码行数:10,代码来源:LFWLoader.java
示例9: fit
import org.nd4j.linalg.util.FeatureUtil; //导入依赖的package包/类
/**
* Fit the model
*
* @param examples the examples to classify (one example in each row)
* @param labels the labels for each example (the number of labels must match
*/
@Override
public void fit(INDArray examples, int[] labels) {
INDArray outcomeMatrix = FeatureUtil.toOutcomeMatrix(labels, numLabels());
fit(examples, outcomeMatrix);
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:13,代码来源:LossLayer.java
示例10: fit
import org.nd4j.linalg.util.FeatureUtil; //导入依赖的package包/类
/**
* Fit the model
*
* @param examples the examples to classify (one example in each row)
* @param labels the labels for each example (the number of labels must match
*/
@Override
public void fit(INDArray examples, int[] labels) {
org.deeplearning4j.nn.conf.layers.OutputLayer layerConf =
(org.deeplearning4j.nn.conf.layers.OutputLayer) getOutputLayer().conf().getLayer();
fit(examples, FeatureUtil.toOutcomeMatrix(labels, layerConf.getNOut()));
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:13,代码来源:MultiLayerNetwork.java
示例11: fromCache
import org.nd4j.linalg.util.FeatureUtil; //导入依赖的package包/类
private DataSet fromCache() {
INDArray outcomes = null;
INDArray input = null;
input = Nd4j.create(batch, vec.lookupTable().layerSize() * vec.getWindow());
outcomes = Nd4j.create(batch, labels.size());
for (int i = 0; i < batch; i++) {
input.putRow(i, WindowConverter.asExampleMatrix(cache.get(i), vec));
int idx = labels.indexOf(cache.get(i).getLabel());
if (idx < 0)
idx = 0;
outcomes.putRow(i, FeatureUtil.toOutcomeVector(idx, labels.size()));
}
return new DataSet(input, outcomes);
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:16,代码来源:Word2VecDataFetcher.java
示例12: toLabelMatrix
import org.nd4j.linalg.util.FeatureUtil; //导入依赖的package包/类
public static INDArray toLabelMatrix(List<String> labels, List<Window> windows) {
int columns = labels.size();
INDArray ret = Nd4j.create(windows.size(), columns);
for (int i = 0; i < ret.rows(); i++) {
ret.putRow(i, FeatureUtil.toOutcomeVector(labels.indexOf(windows.get(i).getLabel()), labels.size()));
}
return ret;
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:9,代码来源:WordConverter.java
示例13: vectorize
import org.nd4j.linalg.util.FeatureUtil; //导入依赖的package包/类
/**
* Vectorizes the passed in text treating it as one document
*
* @param text the text to vectorize
* @param label the label of the text
* @return a dataset with a transform of weights(relative to impl; could be word counts or tfidf scores)
*/
@Override
public DataSet vectorize(String text, String label) {
INDArray input = transform(text);
INDArray labelMatrix = FeatureUtil.toOutcomeVector(labelsSource.indexOf(label), labelsSource.size());
return new DataSet(input, labelMatrix);
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:15,代码来源:TfidfVectorizer.java
示例14: vectorize
import org.nd4j.linalg.util.FeatureUtil; //导入依赖的package包/类
@Override
public DataSet vectorize(String text, String label) {
INDArray input = transform(text);
INDArray labelMatrix = FeatureUtil.toOutcomeVector(labelsSource.indexOf(label), labelsSource.size());
return new DataSet(input, labelMatrix);
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:8,代码来源:BagOfWordsVectorizer.java
示例15: testEval
import org.nd4j.linalg.util.FeatureUtil; //导入依赖的package包/类
@Test
public void testEval() {
int classNum = 5;
Evaluation eval = new Evaluation(classNum);
// Testing the edge case when some classes do not have true positive
INDArray trueOutcome = FeatureUtil.toOutcomeVector(0, 5); //[1,0,0,0,0]
INDArray predictedOutcome = FeatureUtil.toOutcomeVector(0, 5); //[1,0,0,0,0]
eval.eval(trueOutcome, predictedOutcome);
assertEquals(1, eval.classCount(0));
assertEquals(1.0, eval.f1(), 1e-1);
// Testing more than one sample. eval() does not reset the Evaluation instance
INDArray trueOutcome2 = FeatureUtil.toOutcomeVector(1, 5); //[0,1,0,0,0]
INDArray predictedOutcome2 = FeatureUtil.toOutcomeVector(0, 5); //[1,0,0,0,0]
eval.eval(trueOutcome2, predictedOutcome2);
// Verified with sklearn in Python
// from sklearn.metrics import classification_report
// classification_report(['a', 'a'], ['a', 'b'], labels=['a', 'b', 'c', 'd', 'e'])
assertEquals(eval.f1(), 0.6, 1e-1);
// The first entry is 0 label
assertEquals(1, eval.classCount(0));
// The first entry is 1 label
assertEquals(1, eval.classCount(1));
// Class 0: one positive, one negative -> (one true positive, one false positive); no true/false negatives
assertEquals(1, eval.positive().get(0), 0);
assertEquals(1, eval.negative().get(0), 0);
assertEquals(1, eval.truePositives().get(0), 0);
assertEquals(1, eval.falsePositives().get(0), 0);
assertEquals(0, eval.trueNegatives().get(0), 0);
assertEquals(0, eval.falseNegatives().get(0), 0);
// The rest are negative
assertEquals(1, eval.negative().get(0), 0);
// 2 rows and only the first is correct
assertEquals(0.5, eval.accuracy(), 0);
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:39,代码来源:EvalTest.java
示例16: testDenseToOutputLayer
import org.nd4j.linalg.util.FeatureUtil; //导入依赖的package包/类
@Test
public void testDenseToOutputLayer() {
final int numRows = 76;
final int numColumns = 76;
int nChannels = 3;
int outputNum = 6;
int seed = 123;
//setup the network
MultiLayerConfiguration.Builder builder = new NeuralNetConfiguration.Builder().seed(seed)
.l1(1e-1).l2(2e-4).dropOut(0.5).miniBatch(true)
.optimizationAlgo(OptimizationAlgorithm.CONJUGATE_GRADIENT).list()
.layer(0, new ConvolutionLayer.Builder(5, 5).nOut(5).dropOut(0.5).weightInit(WeightInit.XAVIER)
.activation(Activation.RELU).build())
.layer(1, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX, new int[] {2, 2})
.build())
.layer(2, new ConvolutionLayer.Builder(3, 3).nOut(10).dropOut(0.5).weightInit(WeightInit.XAVIER)
.activation(Activation.RELU).build())
.layer(3, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX, new int[] {2, 2})
.build())
.layer(4, new DenseLayer.Builder().nOut(100).activation(Activation.RELU).build())
.layer(5, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
.nOut(outputNum).weightInit(WeightInit.XAVIER).activation(Activation.SOFTMAX)
.build())
.backprop(true).pretrain(false)
.setInputType(InputType.convolutional(numRows, numColumns, nChannels));
DataSet d = new DataSet(Nd4j.rand(12345, 10, nChannels, numRows, numColumns),
FeatureUtil.toOutcomeMatrix(new int[] {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 6));
MultiLayerNetwork network = new MultiLayerNetwork(builder.build());
network.init();
network.fit(d);
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:35,代码来源:ConvolutionLayerSetupTest.java
示例17: getData
import org.nd4j.linalg.util.FeatureUtil; //导入依赖的package包/类
private static INDArray getData() {
Random r = new Random(1);
int[] result = new int[window];
for (int i = 0; i < window; i++) {
result[i] = r.nextInt(nIn);
}
return FeatureUtil.toOutcomeMatrix(result, nIn);
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:9,代码来源:GravesLSTMOutputTest.java
示例18: fromLabeledPoint
import org.nd4j.linalg.util.FeatureUtil; //导入依赖的package包/类
/**
*
* @param point
* @param numPossibleLabels
* @return {@link DataSet}
*/
private static DataSet fromLabeledPoint(LabeledPoint point, int numPossibleLabels) {
Vector features = point.features();
double label = point.label();
return new DataSet(Nd4j.create(features.toArray()),
FeatureUtil.toOutcomeVector((int) label, numPossibleLabels));
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:13,代码来源:MLLibUtil.java
示例19: main
import org.nd4j.linalg.util.FeatureUtil; //导入依赖的package包/类
public static void main(String[] args) {
SparkConf conf = new SparkConf().setMaster("spark://babar1.musigma.com:7077")
.setAppName("Mnist Classification Pipeline (Java)");
SparkContext jsc = new SparkContext(conf);
SQLContext jsql = new SQLContext(jsc);
String imagesPath = "file://" + System.getProperty("user.home") + "/MNIST/images-idx1-ubyte";
String labelsPath = "file://" + System.getProperty("user.home") + "/MNIST/labels-idx1-ubyte";
Map<String, String> params = new HashMap<>();
params.put("imagesPath", imagesPath);
params.put("labelsPath", labelsPath);
params.put("recordsPerPartition", "400");
params.put("maxRecords", "2000");
DataFrame data = jsql.read().format(DefaultSource.class.getName())
.options(params).load();
System.out.println("\nLoaded Mnist dataframe:");
data.show(100);
DataFrame trainingData = data.sample(false, 0.8, 123);
DataFrame testData = data.except(trainingData);
StandardScaler scaler = new StandardScaler()
.setInputCol("features")
.setOutputCol("scaledFeatures");
NeuralNetworkClassification classification = new NeuralNetworkClassification()
.setFeaturesCol("scaledFeatures")
.setEpochs(2)
.setConf(getConfiguration());
Pipeline pipeline = new Pipeline().setStages(new PipelineStage[]{
scaler, classification});
System.out.println("\nTraining...");
PipelineModel model = pipeline.fit(trainingData);
System.out.println("\nTesting...");
DataFrame predictions = model.transform(testData);
predictions.cache();
System.out.println("\nTest Results:");
predictions.show(100);
Evaluation eval = new Evaluation(outputNum);
Row[] rows = predictions.select("label","prediction").collect();
for(int i = 0; i < rows.length; i++) {
INDArray label = FeatureUtil.toOutcomeVector((int) rows[i].getDouble(0), outputNum);
INDArray prediction = FeatureUtil.toOutcomeVector((int) rows[i].getDouble(1), outputNum);
eval.eval(label, prediction);
}
System.out.println(eval.stats());
}
开发者ID:nitish11,项目名称:deeplearning4j-spark-ml-examples,代码行数:54,代码来源:JavaMnistClassification.java
示例20: main
import org.nd4j.linalg.util.FeatureUtil; //导入依赖的package包/类
public static void main(String[] args) {
SparkConf conf = new SparkConf().setMaster("local[*]")
.setAppName("Cards Identification Pipeline (Java)");
SparkContext jsc = new SparkContext(conf);
SQLContext jsql = new SQLContext(jsc);
String imagesPath = "file://" + System.getProperty("user.home") + "/MNIST/images-idx1-ubyte";
String labelsPath = "file://" + System.getProperty("user.home") + "/MNIST/labels-idx1-ubyte";
Map<String, String> params = new HashMap<>();
params.put("imagesPath", imagesPath);
params.put("labelsPath", labelsPath);
params.put("recordsPerPartition", "400");
params.put("maxRecords", "2000");
DataFrame data = jsql.read().format(DefaultSource.class.getName())
.options(params).load();
System.out.println("\nLoaded Card Images dataframe:");
data.show(100);
DataFrame trainingData = data.sample(false, 0.8, 123);
DataFrame testData = data.except(trainingData);
StandardScaler scaler = new StandardScaler()
.setInputCol("features")
.setOutputCol("scaledFeatures");
NeuralNetworkClassification classification = new NeuralNetworkClassification()
.setFeaturesCol("scaledFeatures")
.setEpochs(2)
.setConf(getConfiguration());
Pipeline pipeline = new Pipeline().setStages(new PipelineStage[]{
scaler, classification});
System.out.println("\nTraining...");
PipelineModel model = pipeline.fit(trainingData);
System.out.println("\nTesting...");
DataFrame predictions = model.transform(testData);
predictions.cache();
System.out.println("\nTest Results:");
predictions.show(100);
Evaluation eval = new Evaluation(outputNum);
Row[] rows = predictions.select("label","prediction").collect();
for(int i = 0; i < rows.length; i++) {
INDArray label = FeatureUtil.toOutcomeVector((int) rows[i].getDouble(0), outputNum);
INDArray prediction = FeatureUtil.toOutcomeVector((int) rows[i].getDouble(1), outputNum);
eval.eval(label, prediction);
}
System.out.println(eval.stats());
}
开发者ID:nitish11,项目名称:deeplearning4j-spark-ml-examples,代码行数:54,代码来源:JavaCardsIdentification.java
注:本文中的org.nd4j.linalg.util.FeatureUtil类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论