• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Java SimpleVectorValueChecker类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Java中org.apache.commons.math3.optim.SimpleVectorValueChecker的典型用法代码示例。如果您正苦于以下问题:Java SimpleVectorValueChecker类的具体用法?Java SimpleVectorValueChecker怎么用?Java SimpleVectorValueChecker使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



SimpleVectorValueChecker类属于org.apache.commons.math3.optim包,在下文中一共展示了SimpleVectorValueChecker类的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Java代码示例。

示例1: SmoothingPolynomialBicubicSplineInterpolator

import org.apache.commons.math3.optim.SimpleVectorValueChecker; //导入依赖的package包/类
/**
 * @param xDegree Degree of the polynomial fitting functions along the
 * x-dimension.
 * @param yDegree Degree of the polynomial fitting functions along the
 * y-dimension.
 * @exception NotPositiveException if degrees are not positive
 */
public SmoothingPolynomialBicubicSplineInterpolator(int xDegree, int yDegree)
    throws NotPositiveException {
    if (xDegree < 0) {
        throw new NotPositiveException(xDegree);
    }
    if (yDegree < 0) {
        throw new NotPositiveException(yDegree);
    }
    this.xDegree = xDegree;
    this.yDegree = yDegree;

    final double safeFactor = 1e2;
    final SimpleVectorValueChecker checker
        = new SimpleVectorValueChecker(safeFactor * Precision.EPSILON,
                                       safeFactor * Precision.SAFE_MIN);
    xFitter = new PolynomialFitter(new GaussNewtonOptimizer(false, checker));
    yFitter = new PolynomialFitter(new GaussNewtonOptimizer(false, checker));
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:26,代码来源:SmoothingPolynomialBicubicSplineInterpolator.java


示例2: testMaxEvaluations

import org.apache.commons.math3.optim.SimpleVectorValueChecker; //导入依赖的package包/类
@Test
public void testMaxEvaluations() throws Exception {
    try{
    CircleVectorial circle = new CircleVectorial();
    circle.addPoint( 30.0,  68.0);
    circle.addPoint( 50.0,  -6.0);
    circle.addPoint(110.0, -20.0);
    circle.addPoint( 35.0,  15.0);
    circle.addPoint( 45.0,  97.0);

    LeastSquaresProblem lsp = builder(circle)
            .checkerPair(new SimpleVectorValueChecker(1e-30, 1e-30))
            .maxIterations(Integer.MAX_VALUE)
            .start(new double[]{98.680, 47.345})
            .build();

    optimizer.optimize(lsp);

        fail(optimizer);
    }catch (TooManyEvaluationsException e){
        //expected
    }
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:24,代码来源:GaussNewtonOptimizerWithCholeskyTest.java


示例3: testNoOptimum

import org.apache.commons.math3.optim.SimpleVectorValueChecker; //导入依赖的package包/类
/**
 * Test demonstrating that the user exception is finally thrown if none
 * of the runs succeed.
 */
@Test(expected=TestException.class)
public void testNoOptimum() {
    JacobianMultivariateVectorOptimizer underlyingOptimizer
        = new GaussNewtonOptimizer(true, new SimpleVectorValueChecker(1e-6, 1e-6));
    JDKRandomGenerator g = new JDKRandomGenerator();
    g.setSeed(12373523445l);
    RandomVectorGenerator generator
        = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g));
    MultiStartMultivariateVectorOptimizer optimizer
        = new MultiStartMultivariateVectorOptimizer(underlyingOptimizer, 10, generator);
    optimizer.optimize(new MaxEval(100),
                       new Target(new double[] { 0 }),
                       new Weight(new double[] { 1 }),
                       new InitialGuess(new double[] { 0 }),
                       new ModelFunction(new MultivariateVectorFunction() {
                               public double[] value(double[] point) {
                                   throw new TestException();
                               }
                           }));
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:25,代码来源:MultiStartMultivariateVectorOptimizerTest.java


示例4: testMaxEvaluations

import org.apache.commons.math3.optim.SimpleVectorValueChecker; //导入依赖的package包/类
@Test(expected=TooManyEvaluationsException.class)
public void testMaxEvaluations() throws Exception {
    CircleVectorial circle = new CircleVectorial();
    circle.addPoint( 30.0,  68.0);
    circle.addPoint( 50.0,  -6.0);
    circle.addPoint(110.0, -20.0);
    circle.addPoint( 35.0,  15.0);
    circle.addPoint( 45.0,  97.0);

    GaussNewtonOptimizer optimizer
        = new GaussNewtonOptimizer(new SimpleVectorValueChecker(1e-30, 1e-30));

    optimizer.optimize(new MaxEval(100),
                       circle.getModelFunction(),
                       circle.getModelFunctionJacobian(),
                       new Target(new double[] { 0, 0, 0, 0, 0 }),
                       new Weight(new double[] { 1, 1, 1, 1, 1 }),
                       new InitialGuess(new double[] { 98.680, 47.345 }));
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:20,代码来源:GaussNewtonOptimizerTest.java


示例5: testMaxEvaluations

import org.apache.commons.math3.optim.SimpleVectorValueChecker; //导入依赖的package包/类
@Test(expected=TooManyEvaluationsException.class)
public void testMaxEvaluations() throws Exception {
    CircleVectorial circle = new CircleVectorial();
    circle.addPoint( 30.0,  68.0);
    circle.addPoint( 50.0,  -6.0);
    circle.addPoint(110.0, -20.0);
    circle.addPoint( 35.0,  15.0);
    circle.addPoint( 45.0,  97.0);

    GaussNewtonOptimizer optimizer = createOptimizer()
        .withConvergenceChecker(new SimpleVectorValueChecker(1e-30, 1e-30))
        .withMaxIterations(Integer.MAX_VALUE)
        .withMaxEvaluations(100)
        .withModelAndJacobian(circle.getModelFunction(),
                              circle.getModelFunctionJacobian())
        .withTarget(new double[] { 0, 0, 0, 0, 0 })
        .withWeight(new DiagonalMatrix(new double[] { 1, 1, 1, 1, 1 }))
        .withStartPoint(new double[] { 98.680, 47.345 });

    optimizer.optimize();
}
 
开发者ID:SpoonLabs,项目名称:astor,代码行数:22,代码来源:GaussNewtonOptimizerTest.java


示例6: SmoothingPolynomialBicubicSplineInterpolator

import org.apache.commons.math3.optim.SimpleVectorValueChecker; //导入依赖的package包/类
/**
 * @param xDegree Degree of the polynomial fitting functions along the
 * x-dimension.
 * @param yDegree Degree of the polynomial fitting functions along the
 * y-dimension.
 */
public SmoothingPolynomialBicubicSplineInterpolator(int xDegree,
                                                    int yDegree) {
    if (xDegree < 0) {
        throw new NotPositiveException(xDegree);
    }
    if (yDegree < 0) {
        throw new NotPositiveException(yDegree);
    }
    this.xDegree = xDegree;
    this.yDegree = yDegree;

    final double safeFactor = 1e2;
    final SimpleVectorValueChecker checker
        = new SimpleVectorValueChecker(safeFactor * Precision.EPSILON,
                                       safeFactor * Precision.SAFE_MIN);
    xFitter = new PolynomialFitter(new GaussNewtonOptimizer(false, checker));
    yFitter = new PolynomialFitter(new GaussNewtonOptimizer(false, checker));
}
 
开发者ID:charles-cooper,项目名称:idylfin,代码行数:25,代码来源:SmoothingPolynomialBicubicSplineInterpolator.java


示例7: testMath798

import org.apache.commons.math3.optim.SimpleVectorValueChecker; //导入依赖的package包/类
@Test
public void testMath798() {
    final double tol = 1e-14;
    final SimpleVectorValueChecker checker = new SimpleVectorValueChecker(tol, tol);
    final double[] init = new double[] { 0, 0 };
    final int maxEval = 3;

    final double[] lm = doMath798(new LevenbergMarquardtOptimizer(checker), maxEval, init);
    final double[] gn = doMath798(new GaussNewtonOptimizer(checker), maxEval, init);

    for (int i = 0; i <= 1; i++) {
        Assert.assertEquals(lm[i], gn[i], tol);
    }
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:15,代码来源:PolynomialFitterTest.java


示例8: testMath798WithToleranceTooLow

import org.apache.commons.math3.optim.SimpleVectorValueChecker; //导入依赖的package包/类
/**
 * This test shows that the user can set the maximum number of iterations
 * to avoid running for too long.
 * But in the test case, the real problem is that the tolerance is way too
 * stringent.
 */
@Test(expected=TooManyEvaluationsException.class)
public void testMath798WithToleranceTooLow() {
    final double tol = 1e-100;
    final SimpleVectorValueChecker checker = new SimpleVectorValueChecker(tol, tol);
    final double[] init = new double[] { 0, 0 };
    final int maxEval = 10000; // Trying hard to fit.

    @SuppressWarnings("unused")
    final double[] gn = doMath798(new GaussNewtonOptimizer(checker), maxEval, init);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:17,代码来源:PolynomialFitterTest.java


示例9: testMath798WithToleranceTooLowButNoException

import org.apache.commons.math3.optim.SimpleVectorValueChecker; //导入依赖的package包/类
/**
 * This test shows that the user can set the maximum number of iterations
 * to avoid running for too long.
 * Even if the real problem is that the tolerance is way too stringent, it
 * is possible to get the best solution so far, i.e. a checker will return
 * the point when the maximum iteration count has been reached.
 */
@Test
public void testMath798WithToleranceTooLowButNoException() {
    final double tol = 1e-100;
    final double[] init = new double[] { 0, 0 };
    final int maxEval = 10000; // Trying hard to fit.
    final SimpleVectorValueChecker checker = new SimpleVectorValueChecker(tol, tol, maxEval);

    final double[] lm = doMath798(new LevenbergMarquardtOptimizer(checker), maxEval, init);
    final double[] gn = doMath798(new GaussNewtonOptimizer(checker), maxEval, init);

    for (int i = 0; i <= 1; i++) {
        Assert.assertEquals(lm[i], gn[i], 1e-15);
    }
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:22,代码来源:PolynomialFitterTest.java


示例10: testGetOptimaBeforeOptimize

import org.apache.commons.math3.optim.SimpleVectorValueChecker; //导入依赖的package包/类
@Test(expected=NullPointerException.class)
public void testGetOptimaBeforeOptimize() {

    JacobianMultivariateVectorOptimizer underlyingOptimizer
        = new GaussNewtonOptimizer(true, new SimpleVectorValueChecker(1e-6, 1e-6));
    JDKRandomGenerator g = new JDKRandomGenerator();
    g.setSeed(16069223052l);
    RandomVectorGenerator generator
        = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g));
    MultiStartMultivariateVectorOptimizer optimizer
        = new MultiStartMultivariateVectorOptimizer(underlyingOptimizer, 10, generator);

    optimizer.getOptima();
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:15,代码来源:MultiStartMultivariateVectorOptimizerTest.java


示例11: testTrivial

import org.apache.commons.math3.optim.SimpleVectorValueChecker; //导入依赖的package包/类
@Test
public void testTrivial() {
    LinearProblem problem
        = new LinearProblem(new double[][] { { 2 } }, new double[] { 3 });
    JacobianMultivariateVectorOptimizer underlyingOptimizer
        = new GaussNewtonOptimizer(true, new SimpleVectorValueChecker(1e-6, 1e-6));
    JDKRandomGenerator g = new JDKRandomGenerator();
    g.setSeed(16069223052l);
    RandomVectorGenerator generator
        = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g));
    MultiStartMultivariateVectorOptimizer optimizer
        = new MultiStartMultivariateVectorOptimizer(underlyingOptimizer, 10, generator);

    PointVectorValuePair optimum
        = optimizer.optimize(new MaxEval(100),
                             problem.getModelFunction(),
                             problem.getModelFunctionJacobian(),
                             problem.getTarget(),
                             new Weight(new double[] { 1 }),
                             new InitialGuess(new double[] { 0 }));
    Assert.assertEquals(1.5, optimum.getPoint()[0], 1e-10);
    Assert.assertEquals(3.0, optimum.getValue()[0], 1e-10);
    PointVectorValuePair[] optima = optimizer.getOptima();
    Assert.assertEquals(10, optima.length);
    for (int i = 0; i < optima.length; i++) {
        Assert.assertEquals(1.5, optima[i].getPoint()[0], 1e-10);
        Assert.assertEquals(3.0, optima[i].getValue()[0], 1e-10);
    }
    Assert.assertTrue(optimizer.getEvaluations() > 20);
    Assert.assertTrue(optimizer.getEvaluations() < 50);
    Assert.assertEquals(100, optimizer.getMaxEvaluations());
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:33,代码来源:MultiStartMultivariateVectorOptimizerTest.java


示例12: testIssue914

import org.apache.commons.math3.optim.SimpleVectorValueChecker; //导入依赖的package包/类
@Test
public void testIssue914() {
    LinearProblem problem = new LinearProblem(new double[][] { { 2 } }, new double[] { 3 });
    JacobianMultivariateVectorOptimizer underlyingOptimizer =
            new GaussNewtonOptimizer(true, new SimpleVectorValueChecker(1e-6, 1e-6)) {
        @Override
        public PointVectorValuePair optimize(OptimizationData... optData) {
            // filter out simple bounds, as they are not supported
            // by the underlying optimizer, and we don't really care for this test
            OptimizationData[] filtered = optData.clone();
            for (int i = 0; i < filtered.length; ++i) {
                if (filtered[i] instanceof SimpleBounds) {
                    filtered[i] = null;
                }
            }
            return super.optimize(filtered);
        }
    };
    JDKRandomGenerator g = new JDKRandomGenerator();
    g.setSeed(16069223052l);
    RandomVectorGenerator generator =
            new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g));
    MultiStartMultivariateVectorOptimizer optimizer =
            new MultiStartMultivariateVectorOptimizer(underlyingOptimizer, 10, generator);

    optimizer.optimize(new MaxEval(100),
                       problem.getModelFunction(),
                       problem.getModelFunctionJacobian(),
                       problem.getTarget(),
                       new Weight(new double[] { 1 }),
                       new InitialGuess(new double[] { 0 }),
                       new SimpleBounds(new double[] { -1.0e-10 }, new double[] {  1.0e-10 }));
    PointVectorValuePair[] optima = optimizer.getOptima();
    // only the first start should have succeeded
    Assert.assertEquals(1, optima.length);

}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:38,代码来源:MultiStartMultivariateVectorOptimizerTest.java


示例13: applyToNetwork

import org.apache.commons.math3.optim.SimpleVectorValueChecker; //导入依赖的package包/类
@Override
public double applyToNetwork(final MixedClearingNetwork network) {
   Preconditions.checkNotNull(network);
   
   final VectorCostFunction function = super.getVectorCostFunction(network);
   final MultivariateJacobianFunction model = 
      LeastSquaresFactory.model(function, super.getJacobianMatrixFunction(network));
   final RealVector
      observed = new ArrayRealVector(super.calculateTarget(network)),
      start = new ArrayRealVector(network.getNumberOfEdges());
   for(int i = 0; i< network.getNumberOfEdges(); ++i)
      start.setEntry(i, network.getEdges().get(i).getMaximumRateAdmissibleByBothParties());
   start.set(1.0);
   
   final ConvergenceChecker<LeastSquaresProblem.Evaluation> evaluationChecker =
      LeastSquaresFactory.evaluationChecker(
         new SimpleVectorValueChecker(relErrorTarget, absErrorTarget));
   final LeastSquaresProblem problem =
      LeastSquaresFactory.create(
         model, observed, start, evaluationChecker, maximumEvaluations, maximumIterations);
   
   final LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer();
   final Optimum result = optimizer.optimize(problem);
   
   final double residualCost = result.getRMS();
   System.out.println("Network cleared: residual cost: " + residualCost + ".");
   
   return residualCost;
}
 
开发者ID:crisis-economics,项目名称:CRISIS,代码行数:30,代码来源:LevenbergMarquardtClearingAlgorithm.java



注:本文中的org.apache.commons.math3.optim.SimpleVectorValueChecker类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Java DynamicDoubleProperty类代码示例发布时间:2022-05-23
下一篇:
Java StorageErrorCodeStrings类代码示例发布时间:2022-05-23
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap