• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Java DistributedRowMatrix类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Java中org.apache.mahout.math.hadoop.DistributedRowMatrix的典型用法代码示例。如果您正苦于以下问题:Java DistributedRowMatrix类的具体用法?Java DistributedRowMatrix怎么用?Java DistributedRowMatrix使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



DistributedRowMatrix类属于org.apache.mahout.math.hadoop包,在下文中一共展示了DistributedRowMatrix类的19个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Java代码示例。

示例1: computeYtXandXtX

import org.apache.mahout.math.hadoop.DistributedRowMatrix; //导入依赖的package包/类
/**
 * Refer to {@link CompositeJob} for a job description. In short, it does
 * 
 * X = Y * MEM
 * 
 * XtX = (X - Xm)' * (X - Xm)
 *  
 * YtX = (Y - Ym)' * (X - Xm)
 * 
 * @param distMatrixY the input matrix Y
 * @param inMemMatrix the in memory matrix MEM
 * @param ym the mean vector of Y
 * @param xm = ym * MEM
 * @param id the unique id for HDFS output directory
 * @return the XtX and YtX wrapped in a CompositeResult object
 * @throws IOException
 * @throws InterruptedException
 * @throws ClassNotFoundException
 */
public void computeYtXandXtX(
    DistributedRowMatrix distMatrixY, DistributedRowMatrix inMemMatrix,
    Vector ym, Vector xm, Path tmpPath, Configuration conf, String id) throws IOException,
    InterruptedException, ClassNotFoundException {
  if (distMatrixY.numCols() != inMemMatrix.numRows()) {
    throw new CardinalityException(distMatrixY.numCols(), inMemMatrix.numRows());
  }
  Path outPath = new Path(tmpPath, "Composite"+id);
  Path ymPath = PCACommon.toDistributedVector(ym,
      tmpPath, "ym-compositeJob" + id, conf);
  Path xmPath = PCACommon.toDistributedVector(xm,
      tmpPath, "xm-compositeJob" + id, conf);
  FileSystem fs = FileSystem.get(outPath.toUri(), conf);
  if (!fs.exists(outPath)) {
    run(conf, distMatrixY.getRowPath(), inMemMatrix.getRowPath()
        .toString(), inMemMatrix.numRows(), inMemMatrix.numCols(), ymPath
        .toString(), xmPath.toString(), outPath);
  } else {
    log.warn("----------- Skip Compositejob - already exists: " + outPath);
  }
  
  loadXtX(ymPath, inMemMatrix.numCols(), conf);
  loadYtX(outPath, tmpPath, inMemMatrix.numRows(), inMemMatrix.numCols(), conf);
}
 
开发者ID:SiddharthMalhotra,项目名称:sPCA,代码行数:44,代码来源:CompositeJob.java


示例2: setup

import org.apache.mahout.math.hadoop.DistributedRowMatrix; //导入依赖的package包/类
@Override
public void setup(Context context) throws IOException {
  Configuration conf = context.getConfiguration();
  Path inMemMatrixPath = new Path(conf.get(MATRIXINMEMORY));
  int inMemMatrixNumRows = conf.getInt(MATRIXINMEMORYROWS, 0);
  int inMemMatrixNumCols = conf.getInt(MATRIXINMEMORYCOLS, 0);
  Path ymPath = new Path(conf.get(YMPATH));
  Path xmPath = new Path(conf.get(XMPATH));
  try {
    ym = PCACommon.toDenseVector(ymPath, conf);
    xm = PCACommon.toDenseVector(xmPath, conf);
  } catch (IOException e) {
    e.printStackTrace();
  }
  // TODO: add an argument for temp path
  Path tmpPath = inMemMatrixPath.getParent();
  DistributedRowMatrix distMatrix = new DistributedRowMatrix(
      inMemMatrixPath, tmpPath, inMemMatrixNumRows, inMemMatrixNumCols);
  distMatrix.setConf(conf);
  inMemMatrix = PCACommon.toDenseMatrix(distMatrix);
}
 
开发者ID:SiddharthMalhotra,项目名称:sPCA,代码行数:22,代码来源:CompositeJob.java


示例3: performEigenDecomposition

import org.apache.mahout.math.hadoop.DistributedRowMatrix; //导入依赖的package包/类
/**
 * Does most of the heavy lifting in setting up Paths, configuring return
 * values, and generally performing the tedious administrative tasks involved
 * in an eigen-decomposition and running the verifier
 */
public static DistributedRowMatrix performEigenDecomposition(Configuration conf,
                                                             DistributedRowMatrix input,
                                                             LanczosState state,
                                                             int numEigenVectors,
                                                             int overshoot,
                                                             Path tmp) throws IOException {
  DistributedLanczosSolver solver = new DistributedLanczosSolver();
  Path seqFiles = new Path(tmp, "eigendecomp-" + (System.nanoTime() & 0xFF));
  solver.runJob(conf,
                state,
                overshoot,
                true,
                seqFiles.toString());

  // now run the verifier to trim down the number of eigenvectors
  EigenVerificationJob verifier = new EigenVerificationJob();
  Path verifiedEigens = new Path(tmp, "verifiedeigens");
  verifier.runJob(conf, seqFiles, input.getRowPath(), verifiedEigens, false, 1.0, numEigenVectors);
  Path cleanedEigens = verifier.getCleanedEigensPath();
  return new DistributedRowMatrix(cleanedEigens, new Path(cleanedEigens, "tmp"), numEigenVectors, input.numRows());
}
 
开发者ID:saradelrio,项目名称:Chi-FRBCS-BigDataCS,代码行数:27,代码来源:EigencutsDriver.java


示例4: reduce

import org.apache.mahout.math.hadoop.DistributedRowMatrix; //导入依赖的package包/类
@Override
protected void reduce(IntWritable row, Iterable<DistributedRowMatrix.MatrixEntryWritable> values, Context context)
  throws IOException, InterruptedException {
  int size = context.getConfiguration().getInt(EigencutsKeys.AFFINITY_DIMENSIONS, Integer.MAX_VALUE);
  RandomAccessSparseVector out = new RandomAccessSparseVector(size, 100);

  for (DistributedRowMatrix.MatrixEntryWritable element : values) {
    out.setQuick(element.getCol(), element.getVal());
    if (log.isDebugEnabled()) {
      log.debug("(DEBUG - REDUCE) Row[{}], Column[{}], Value[{}]",
                new Object[] {row.get(), element.getCol(), element.getVal()});
    }
  }
  SequentialAccessSparseVector output = new SequentialAccessSparseVector(out);
  context.write(row, new VectorWritable(output));
}
 
开发者ID:saradelrio,项目名称:Chi-FRBCS-BigDataCS,代码行数:17,代码来源:AffinityMatrixInputReducer.java


示例5: reduce

import org.apache.mahout.math.hadoop.DistributedRowMatrix; //导入依赖的package包/类
@Override
protected void reduce(SimilarityMatrixEntryKey key, Iterable<DistributedRowMatrix.MatrixEntryWritable> entries,
		Context ctx) throws IOException, InterruptedException
{
	RandomAccessSparseVector temporaryVector = new RandomAccessSparseVector(Integer.MAX_VALUE,
			maxSimilaritiesPerRow);
	int similaritiesSet = 0;
	for (DistributedRowMatrix.MatrixEntryWritable entry : entries)
	{
		temporaryVector.setQuick(entry.getCol(), entry.getVal());
		if (++similaritiesSet == maxSimilaritiesPerRow)
		{
			break;
		}
	}
	SequentialAccessSparseVector vector = new SequentialAccessSparseVector(temporaryVector);
	ctx.write(new IntWritable(key.getRow()), new VectorWritable(vector));
}
 
开发者ID:beeldengeluid,项目名称:zieook,代码行数:19,代码来源:RowSimilarityZieOok.java


示例6: loadXtX

import org.apache.mahout.math.hadoop.DistributedRowMatrix; //导入依赖的package包/类
public void loadXtX(Path ymPath, int inMemMatrixNumCols,
    Configuration conf) {
  if (xtx != null)
    return;
  Path xtxOutputPath = getXtXPathBasedOnYm(ymPath);
  DistributedRowMatrix xtxDistMtx = new DistributedRowMatrix(xtxOutputPath,
      xtxOutputPath.getParent(), inMemMatrixNumCols, inMemMatrixNumCols);
  xtxDistMtx.setConf(conf);
  xtx = PCACommon.toDenseMatrix(xtxDistMtx);
}
 
开发者ID:SiddharthMalhotra,项目名称:sPCA,代码行数:11,代码来源:CompositeJob.java


示例7: loadYtX

import org.apache.mahout.math.hadoop.DistributedRowMatrix; //导入依赖的package包/类
public void loadYtX(Path outPath, Path tmpPath, int numRows, int numCols,
    Configuration conf) {
  if (ytx != null)
    return;
  DistributedRowMatrix out = new DistributedRowMatrix(outPath,
      tmpPath, numRows,
      numCols);
  out.setConf(conf);
  ytx = PCACommon.toDenseMatrix(out);
}
 
开发者ID:SiddharthMalhotra,项目名称:sPCA,代码行数:11,代码来源:CompositeJob.java


示例8: sample

import org.apache.mahout.math.hadoop.DistributedRowMatrix; //导入依赖的package包/类
static Matrix sample(DistributedRowMatrix bigMatrix) {
  setSampleRate(bigMatrix.numRows(), bigMatrix.numCols());
  Matrix sampleMatrix = new DenseMatrix(
      (int) (bigMatrix.numRows() * SAMPLE_RATE), bigMatrix.numCols());
  sample(bigMatrix, sampleMatrix);
  return sampleMatrix;
}
 
开发者ID:SiddharthMalhotra,项目名称:sPCA,代码行数:8,代码来源:SPCADriver.java


示例9: toDenseMatrix

import org.apache.mahout.math.hadoop.DistributedRowMatrix; //导入依赖的package包/类
/***
 * If the matrix is small, we can convert it to an in memory representation
 * and then run efficient centralized operations
 * 
 * @param origMtx
 * @return a dense matrix including the data
 */
static DenseMatrix toDenseMatrix(DistributedRowMatrix origMtx) {
  DenseMatrix mtx = new DenseMatrix(origMtx.numRows(), origMtx.numCols());
  Iterator<MatrixSlice> sliceIterator = origMtx.iterateAll();
  while (sliceIterator.hasNext()) {
    MatrixSlice slice = sliceIterator.next();
    mtx.viewRow(slice.index()).assign(slice.vector());
  }
  return mtx;
}
 
开发者ID:SiddharthMalhotra,项目名称:sPCA,代码行数:17,代码来源:PCACommon.java


示例10: toDistributedRowMatrix

import org.apache.mahout.math.hadoop.DistributedRowMatrix; //导入依赖的package包/类
/**
 * Convert an in-memory representation of a matrix to a distributed version It
 * then can be used in distributed jobs
 * 
 * @param oriMatrix
 * @return path that contains the matrix files
 * @throws IOException
 */
static DistributedRowMatrix toDistributedRowMatrix(Matrix origMatrix,
    Path outPath, Path tmpPath, String label) throws IOException {
  Configuration conf = new Configuration();
  Path outputDir = new Path(outPath, label + origMatrix.numRows() + "x"
      + origMatrix.numCols());
  FileSystem fs = FileSystem.get(outputDir.toUri(), conf);
  if (!fs.exists(outputDir)) {
    Path outputFile = new Path(outputDir, "singleSliceMatrix");
    SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf,
        outputFile, IntWritable.class, VectorWritable.class);
    VectorWritable vectorWritable = new VectorWritable();
    try {
      for (int r = 0; r < origMatrix.numRows(); r++) {
        Vector vector = origMatrix.viewRow(r);
        vectorWritable.set(vector);
        writer.append(new IntWritable(r), vectorWritable);
      }
    } finally {
      writer.close();
    }
  } else {
    log.warn("----------- Skip matrix " + outputDir + " - already exists");
  }
  DistributedRowMatrix dMatrix = new DistributedRowMatrix(outputDir, tmpPath,
      origMatrix.numRows(), origMatrix.numCols());
  dMatrix.setConf(conf);
  return dMatrix;
}
 
开发者ID:SiddharthMalhotra,项目名称:sPCA,代码行数:37,代码来源:PCACommon.java


示例11: crossTestIterationOfMapReducePPCASequentialPPCA

import org.apache.mahout.math.hadoop.DistributedRowMatrix; //导入依赖的package包/类
@Test
public void crossTestIterationOfMapReducePPCASequentialPPCA() throws Exception {
  Matrix C_central = PCACommon.randomMatrix(D, d);
  double ss = PCACommon.randSS();
  InitialValues initValSeq = new InitialValues(C_central, ss);
  InitialValues initValMR = new InitialValues(C_central.clone(), ss);

  //1. run sequential
  Matrix Ye_central = new DenseMatrix(N, D);
  int row = 0;
  for (VectorWritable vw : new SequenceFileDirValueIterable<VectorWritable>(
      input, PathType.LIST, null, conf)) {
    Ye_central.assignRow(row, vw.get());
    row++;
  }
  double bishopSeqErr = ppcaDriver.runSequential(conf, Ye_central, initValSeq, 1);
  
  //2. run mapreduce
  DistributedRowMatrix Ye = new DistributedRowMatrix(input, tmp, N, D);
  Ye.setConf(conf);
  double bishopMRErr = ppcaDriver.runMapReduce(conf, Ye, initValMR, output, N, D, d, 1, 1, 1, 1);
  
  Assert.assertEquals(
      "ss value is different in sequential and mapreduce PCA", initValSeq.ss,
      initValMR.ss, EPSILON);
  double seqCTrace = PCACommon.trace(initValSeq.C);
  double mrCTrace = PCACommon.trace(initValMR.C);
  Assert.assertEquals(
      "C value is different in sequential and mapreduce PCA", seqCTrace,
      mrCTrace, EPSILON);
  Assert.assertEquals(
      "The PPCA error between sequntial and mapreduce methods is too different: "
          + bishopSeqErr + "!= " + bishopMRErr, bishopSeqErr, bishopMRErr, EPSILON);
}
 
开发者ID:SiddharthMalhotra,项目名称:sPCA,代码行数:35,代码来源:PCATest.java


示例12: setup

import org.apache.mahout.math.hadoop.DistributedRowMatrix; //导入依赖的package包/类
@Before
public void setup() throws Exception {
  conf = new Configuration();
  long currTime = System.currentTimeMillis();
  Path outputDir = new Path("/tmp/" + currTime);
  FileSystem fs;
  try {
    fs = FileSystem.get(outputDir.toUri(), conf);
    fs.mkdirs(outputDir);
    fs.deleteOnExit(outputDir);
  } catch (IOException e) {
    e.printStackTrace();
    Assert.fail("Error in creating output direcoty " + outputDir);
    return;
  }
  ym = computeMean(inputVectors);
  double[] xm = new double[xsize];
  times(ym, y2xVectors, xm);
  double[] zm = new double[cols];
  timesTranspose(xm, cVectors, zm);
  for (int c = 0; c < cols; c++)
    zm[c] -= ym[c];
  ymPath = PCACommon.toDistributedVector(new DenseVector(ym), outputDir,
      "ym", conf);
  zmPath = PCACommon.toDistributedVector(new DenseVector(zm), outputDir,
      "zm", conf);
  DistributedRowMatrix distMatrix = PCACommon.toDistributedRowMatrix(
      new DenseMatrix(y2xVectors), outputDir, outputDir, "y2xMatrix");
  y2xMatrixPath = distMatrix.getRowPath();
  distMatrix = PCACommon.toDistributedRowMatrix(
      new DenseMatrix(cVectors), outputDir, outputDir, "cMatrix");
  cMatrixPath = distMatrix.getRowPath();
  computeError(inputVectors);
}
 
开发者ID:SiddharthMalhotra,项目名称:sPCA,代码行数:35,代码来源:ReconstructionErrJobTest.java


示例13: setup

import org.apache.mahout.math.hadoop.DistributedRowMatrix; //导入依赖的package包/类
@Before
public void setup() throws Exception {
  conf = new Configuration();
  long currTime = System.currentTimeMillis();
  Path outputDir = new Path("/tmp/" + currTime);
  FileSystem fs;
  try {
    fs = FileSystem.get(outputDir.toUri(), conf);
    fs.mkdirs(outputDir);
    fs.deleteOnExit(outputDir);
  } catch (IOException e) {
    e.printStackTrace();
    Assert.fail("Error in creating output direcoty " + outputDir);
    return;
  }
  ym = computeMean(inputVectors);
  double[] xm = new double[xsize];
  times(ym, y2xVectors, xm);
  ymPath = PCACommon.toDistributedVector(new DenseVector(ym), outputDir,
      "ym", conf);
  xmPath = PCACommon.toDistributedVector(new DenseVector(xm), outputDir,
      "xm", conf);
  DistributedRowMatrix distMatrix = PCACommon.toDistributedRowMatrix(
      new DenseMatrix(y2xVectors), outputDir, outputDir, "y2xMatrix");
  y2xMatrixPath = distMatrix.getRowPath();
  distMatrix = PCACommon.toDistributedRowMatrix(
      new DenseMatrix(cVectors), outputDir, outputDir, "cMatrix");
  cMatrixPath = distMatrix.getRowPath();
}
 
开发者ID:SiddharthMalhotra,项目名称:sPCA,代码行数:30,代码来源:VarianceJobTest.java


示例14: runJob

import org.apache.mahout.math.hadoop.DistributedRowMatrix; //导入依赖的package包/类
/**
 * Initializes and executes the job of reading the documents containing
 * the data of the affinity matrix in (x_i, x_j, value) format.
 */
public static void runJob(Path input, Path output, int rows, int cols)
  throws IOException, InterruptedException, ClassNotFoundException {
  Configuration conf = new Configuration();
  HadoopUtil.delete(conf, output);

  conf.setInt(EigencutsKeys.AFFINITY_DIMENSIONS, rows);
  Job job = new Job(conf, "AffinityMatrixInputJob: " + input + " -> M/R -> " + output);

  job.setMapOutputKeyClass(IntWritable.class);
  job.setMapOutputValueClass(DistributedRowMatrix.MatrixEntryWritable.class);
  job.setOutputKeyClass(IntWritable.class);
  job.setOutputValueClass(VectorWritable.class);
  job.setOutputFormatClass(SequenceFileOutputFormat.class);
  job.setMapperClass(AffinityMatrixInputMapper.class);   
  job.setReducerClass(AffinityMatrixInputReducer.class);

  FileInputFormat.addInputPath(job, input);
  FileOutputFormat.setOutputPath(job, output);

  job.setJarByClass(AffinityMatrixInputJob.class);

  boolean succeeded = job.waitForCompletion(true);
  if (!succeeded) {
    throw new IllegalStateException("Job failed!");
  }
}
 
开发者ID:saradelrio,项目名称:Chi-FRBCS-BigDataCS,代码行数:31,代码来源:AffinityMatrixInputJob.java


示例15: map

import org.apache.mahout.math.hadoop.DistributedRowMatrix; //导入依赖的package包/类
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

  String[] elements = COMMA_PATTERN.split(value.toString());
  log.debug("(DEBUG - MAP) Key[{}], Value[{}]", key.get(), value);

  // enforce well-formed textual representation of the graph
  if (elements.length != 3) {
    throw new IOException("Expected input of length 3, received "
                          + elements.length + ". Please make sure you adhere to "
                          + "the structure of (i,j,value) for representing a graph in text. "
                          + "Input line was: '" + value + "'.");
  }
  if (elements[0].isEmpty() || elements[1].isEmpty() || elements[2].isEmpty()) {
    throw new IOException("Found an element of 0 length. Please be sure you adhere to the structure of "
        + "(i,j,value) for  representing a graph in text.");
  }

  // parse the line of text into a DistributedRowMatrix entry,
  // making the row (elements[0]) the key to the Reducer, and
  // setting the column (elements[1]) in the entry itself
  DistributedRowMatrix.MatrixEntryWritable toAdd = new DistributedRowMatrix.MatrixEntryWritable();
  IntWritable row = new IntWritable(Integer.valueOf(elements[0]));
  toAdd.setRow(-1); // already set as the Reducer's key
  toAdd.setCol(Integer.valueOf(elements[1]));
  toAdd.setVal(Double.valueOf(elements[2]));
  context.write(row, toAdd);
}
 
开发者ID:saradelrio,项目名称:Chi-FRBCS-BigDataCS,代码行数:29,代码来源:AffinityMatrixInputMapper.java


示例16: runJob

import org.apache.mahout.math.hadoop.DistributedRowMatrix; //导入依赖的package包/类
public static DistributedRowMatrix runJob(Path markovPath, Vector diag, Path outputPath, Path tmpPath)
  throws IOException, ClassNotFoundException, InterruptedException {

  // set up the serialization of the diagonal vector
  Configuration conf = new Configuration();
  FileSystem fs = FileSystem.get(markovPath.toUri(), conf);
  markovPath = fs.makeQualified(markovPath);
  outputPath = fs.makeQualified(outputPath);
  Path vectorOutputPath = new Path(outputPath.getParent(), "vector");
  VectorCache.save(new IntWritable(EigencutsKeys.DIAGONAL_CACHE_INDEX), diag, vectorOutputPath, conf);

  // set up the job itself
  Job job = new Job(conf, "VectorMatrixMultiplication");
  job.setInputFormatClass(SequenceFileInputFormat.class);
  job.setOutputKeyClass(IntWritable.class);
  job.setOutputValueClass(VectorWritable.class);
  job.setOutputFormatClass(SequenceFileOutputFormat.class);
  job.setMapperClass(VectorMatrixMultiplicationMapper.class);
  job.setNumReduceTasks(0);

  FileInputFormat.addInputPath(job, markovPath);
  FileOutputFormat.setOutputPath(job, outputPath);

  job.setJarByClass(VectorMatrixMultiplicationJob.class);

  boolean succeeded = job.waitForCompletion(true);
  if (!succeeded) {
    throw new IllegalStateException("Job failed!");
  }

  // build the resulting DRM from the results
  return new DistributedRowMatrix(outputPath, tmpPath,
      diag.size(), diag.size());
}
 
开发者ID:saradelrio,项目名称:Chi-FRBCS-BigDataCS,代码行数:35,代码来源:VectorMatrixMultiplicationJob.java


示例17: runMapReduce

import org.apache.mahout.math.hadoop.DistributedRowMatrix; //导入依赖的package包/类
/**
 * Run sPCA
 * 
 * @param conf
 *          the configuration
 * @param input
 *          the path to the input matrix Y
 * @param output
 *          the path to the output (currently for normalization output)
 * @param nRows
 *          number of rows in input matrix
 * @param nCols
 *          number of columns in input matrix
 * @param nPCs
 *          number of desired principal components
 * @param splitFactor
 *          divide the block size by this number to increase parallelism
 * @return the error
 * @throws Exception
 */
double runMapReduce(Configuration conf, Path input, Path output, final int nRows,
    final int nCols, final int nPCs, final int splitFactor, final float errSampleRate, final int maxIterations, final int normalize) throws Exception {
  Matrix centC = PCACommon.randomMatrix(nCols, nPCs);
  double ss = PCACommon.randSS();
  InitialValues initVal = new InitialValues(centC, ss);
  DistributedRowMatrix distY = new DistributedRowMatrix(input,
      getTempPath(), nRows, nCols);
  distY.setConf(conf);
  /**
   * Here we can control the number of iterations as well as the input size.
   * Can be used to improve initVal by first running on a sample, e.g.:
   * runMapReduce(conf, distY, initVal, ..., 1, 10, 0.001);
   * runMapReduce(conf, distY, initVal, ..., 11, 13, 0.01);
   * runMapReduce(conf, distY, initVal, ..., 14, 1, 1);
   */
  double error = runMapReduce(conf, distY, initVal, output, nRows, nCols, nPCs,
      splitFactor, errSampleRate, maxIterations, normalize);
  return error;
}
 
开发者ID:SiddharthMalhotra,项目名称:sPCA,代码行数:40,代码来源:SPCADriver.java


示例18: computeVariance

import org.apache.mahout.math.hadoop.DistributedRowMatrix; //导入依赖的package包/类
/**
 * refer to {@link VarianceJob} for job description. In short, it does: for i
 * in 1:N: sum += (xi-xm) * C' * (yi-ym)'
 * 
 * @param matrixY
 *          the input matrix Y
 * @param ym
 *          the column mean of Y
 * @param matrixY2X
 *          the matrix to generate X
 * @param xm
 *          = ym * Y2X
 * @param matrixC
 *          the matrix of principal components
 * @param tmpPath
 *          the temporary path in HDFS
 * @param conf
 *          the configuration
 * @param id
 *          the unique id to name files in HDFS
 * @return
 * @throws IOException
 * @throws InterruptedException
 * @throws ClassNotFoundException
 */
public double computeVariance(DistributedRowMatrix matrixY, Vector ym,
    DistributedRowMatrix matrixY2X, Vector xm, DistributedRowMatrix matrixC,
    Path tmpPath, Configuration conf, String id) throws IOException,
    InterruptedException, ClassNotFoundException {
  Path xmPath = PCACommon.toDistributedVector(xm, tmpPath, "Xm-varianceJob"
      + id, conf);
  Path ymPath = PCACommon.toDistributedVector(ym, tmpPath, "Ym-varianceJob"
      + id, conf);

  Path outPath = new Path(tmpPath, "Variance"+id);
  FileSystem fs = FileSystem.get(outPath.toUri(), conf);
  if (!fs.exists(outPath)) {
    run(conf, matrixY.getRowPath(), ymPath.toString(), matrixY2X.getRowPath()
        .toString(), xmPath.toString(), matrixC.getRowPath().toString(),
        outPath);
  } else {
    log.warn("---------- Skip variance - already exists: " + outPath);
  }
  loadResult(outPath, conf);
  return finalSum;// finalNumber;
}
 
开发者ID:SiddharthMalhotra,项目名称:sPCA,代码行数:47,代码来源:VarianceJob.java


示例19: run

import org.apache.mahout.math.hadoop.DistributedRowMatrix; //导入依赖的package包/类
@Override
public int run(String[] args) throws IOException, ClassNotFoundException, InterruptedException
{

	addInputOption();
	addOutputOption();
	addOption("numberOfColumns", "r", "Number of columns in the input matrix");
	addOption("similarityClassname", "s", "Name of distributed similarity class to instantiate, alternatively use "
			+ "one of the predefined similarities (" + SimilarityType.listEnumNames() + ')');
	addOption("maxSimilaritiesPerRow", "m", "Number of maximum similarities per row (default: "
			+ DEFAULT_MAX_SIMILARITIES_PER_ROW + ')', String.valueOf(DEFAULT_MAX_SIMILARITIES_PER_ROW));

	Map<String, String> parsedArgs = parseArguments(args);
	if (parsedArgs == null)
	{
		return -1;
	}

	int numberOfColumns = Integer.parseInt(parsedArgs.get("--numberOfColumns"));
	String similarityClassnameArg = parsedArgs.get("--similarityClassname");
	String distributedSimilarityClassname;
	try
	{
		distributedSimilarityClassname = SimilarityType.valueOf(similarityClassnameArg)
				.getSimilarityImplementationClassName();
	}
	catch (IllegalArgumentException iae)
	{
		distributedSimilarityClassname = similarityClassnameArg;
	}

	int maxSimilaritiesPerRow = Integer.parseInt(parsedArgs.get("--maxSimilaritiesPerRow"));

	Path inputPath = getInputPath();
	Path outputPath = getOutputPath();
	Path tempDirPath = new Path(parsedArgs.get("--tempDir"));

	Path weightsPath = new Path(tempDirPath, "weights");
	Path pairwiseSimilarityPath = new Path(tempDirPath, "pairwiseSimilarity");

	AtomicInteger currentPhase = new AtomicInteger();

	if (shouldRunNextPhase(parsedArgs, currentPhase))
	{
		Job weights = prepareJob(inputPath, weightsPath, SequenceFileInputFormat.class, RowWeightMapper.class,
				VarIntWritable.class, WeightedOccurrence.class, WeightedOccurrencesPerColumnReducer.class,
				VarIntWritable.class, WeightedOccurrenceArray.class, SequenceFileOutputFormat.class);

		weights.getConfiguration().set(DISTRIBUTED_SIMILARITY_CLASSNAME, distributedSimilarityClassname);
		weights.waitForCompletion(true);
	}

	if (shouldRunNextPhase(parsedArgs, currentPhase))
	{
		Job pairwiseSimilarity = prepareJob(weightsPath, pairwiseSimilarityPath, SequenceFileInputFormat.class,
				CooccurrencesMapper.class, WeightedRowPair.class, Cooccurrence.class, SimilarityReducer.class,
				SimilarityMatrixEntryKey.class, DistributedRowMatrix.MatrixEntryWritable.class,
				SequenceFileOutputFormat.class);

		Configuration pairwiseConf = pairwiseSimilarity.getConfiguration();
		pairwiseConf.set(DISTRIBUTED_SIMILARITY_CLASSNAME, distributedSimilarityClassname);
		pairwiseConf.setInt(NUMBER_OF_COLUMNS, numberOfColumns);
		pairwiseSimilarity.waitForCompletion(true);
	}

	if (shouldRunNextPhase(parsedArgs, currentPhase))
	{
		Job asMatrix = prepareJob(pairwiseSimilarityPath, outputPath, SequenceFileInputFormat.class, Mapper.class,
				SimilarityMatrixEntryKey.class, DistributedRowMatrix.MatrixEntryWritable.class,
				EntriesToVectorsReducer.class, IntWritable.class, VectorWritable.class, SequenceFileOutputFormat.class);
		asMatrix.setPartitionerClass(HashPartitioner.class);
		asMatrix.setGroupingComparatorClass(SimilarityMatrixEntryKey.SimilarityMatrixEntryKeyGroupingComparator.class);
		asMatrix.getConfiguration().setInt(MAX_SIMILARITIES_PER_ROW, maxSimilaritiesPerRow);
		asMatrix.waitForCompletion(true);
	}

	return 0;
}
 
开发者ID:beeldengeluid,项目名称:zieook,代码行数:79,代码来源:RowSimilarityZieOok.java



注:本文中的org.apache.mahout.math.hadoop.DistributedRowMatrix类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Java STBVorbisInfo类代码示例发布时间:2022-05-23
下一篇:
Java JavaPostfixTemplatesUtils类代码示例发布时间:2022-05-23
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap