• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Java SMOreg类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Java中weka.classifiers.functions.SMOreg的典型用法代码示例。如果您正苦于以下问题:Java SMOreg类的具体用法?Java SMOreg怎么用?Java SMOreg使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



SMOreg类属于weka.classifiers.functions包,在下文中一共展示了SMOreg类的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Java代码示例。

示例1: setupCV

import weka.classifiers.functions.SMOreg; //导入依赖的package包/类
public static ParameterSpace setupCV()
{
    // configure training data reader dimension
    Map<String, Object> dimReaderTrain = new HashMap<String, Object>();
    dimReaderTrain.put(Constants.DIM_READER_TRAIN, STSReader.class);
    dimReaderTrain.put(Constants.DIM_READER_TRAIN_PARAMS,
            Arrays.asList(new Object[] {
                    STSReader.PARAM_INPUT_FILES, inputFilesTrain,
                    STSReader.PARAM_GOLD_FILES, goldFilesTrain
            }));

    @SuppressWarnings("unchecked")
    Dimension<List<String>> dimClassificationArgs = Dimension.create(
            Constants.DIM_CLASSIFICATION_ARGS,
            Arrays.asList(new String[] {
                    // which classifiers should be tested
                    SMOreg.class.getName()
            }));

    @SuppressWarnings("unchecked")
    Dimension<List<String>> dimFeatureSets = Dimension.create(
            Constants.DIM_FEATURE_SET,
            Arrays.asList(new String[] {
                    // which feature extractors should be used
                    NrOfTokensFeatureExtractor.class.getName(),
                    GreedyStringTilingFeatureExtractor.class.getName()
            }));

    @SuppressWarnings("unchecked")
    ParameterSpace pSpace = new ParameterSpace(
            Dimension.createBundle("readerTrain",dimReaderTrain),
            Dimension.create(Constants.DIM_MULTI_LABEL, false),
            Dimension.create(Constants.DIM_IS_REGRESSION, true),
            Dimension.create(Constants.DIM_DATA_WRITER, WekaDataWriter.class.getName()),
            dimFeatureSets,
            dimClassificationArgs
    );
    return pSpace;
}
 
开发者ID:zesch,项目名称:semeval,代码行数:40,代码来源:RunExperimentDKproTC.java


示例2: setup

import weka.classifiers.functions.SMOreg; //导入依赖的package包/类
public static ParameterSpace setup()
{
    // configure training data reader dimension
    Map<String, Object> dimReaderTrain = new HashMap<String, Object>();
    dimReaderTrain.put(Constants.DIM_READER_TRAIN, STSReader.class);
    dimReaderTrain.put(Constants.DIM_READER_TRAIN_PARAMS,
            Arrays.asList(new Object[] {
                    STSReader.PARAM_INPUT_FILES, inputFiles,
                    STSReader.PARAM_GOLD_FILES, goldFiles
            }));

    @SuppressWarnings("unchecked")
    Dimension<List<String>> dimClassificationArgs = Dimension.create(
            Constants.DIM_CLASSIFICATION_ARGS,
            Arrays.asList(new String[] {
                    // which classifiers should be tested
                    SMOreg.class.getName()
            }));

    @SuppressWarnings("unchecked")
    Dimension<List<String>> dimFeatureSets = Dimension.create(
            Constants.DIM_FEATURE_SET,
            Arrays.asList(new String[] {
                    // which feature extractors should be used
                    NrOfTokensFeatureExtractor.class.getName(),
                    GreedyStringTilingFeatureExtractor.class.getName()
            }));

    @SuppressWarnings("unchecked")
    ParameterSpace pSpace = new ParameterSpace(
            Dimension.createBundle("readerTrain",dimReaderTrain),
            Dimension.create(Constants.DIM_MULTI_LABEL, false),
            Dimension.create(Constants.DIM_IS_REGRESSION, true),
            Dimension.create(Constants.DIM_DATA_WRITER, WekaDataWriter.class.getName()),
            dimFeatureSets,
            dimClassificationArgs
    );
    return pSpace;
}
 
开发者ID:zesch,项目名称:semeval,代码行数:40,代码来源:RunExperimentDKproTC.java


示例3: toString

import weka.classifiers.functions.SMOreg; //导入依赖的package包/类
/**
 * Prints out the classifier.
 * 
 * @return a description of the classifier as a string
 */
@Override
public String toString() {
  StringBuffer text = new StringBuffer();
  text.append("SMOreg\n\n");
  if (m_weights != null) {
    text.append("weights (not support vectors):\n");
    // it's a linear machine
    for (int i = 0; i < m_data.numAttributes(); i++) {
      if (i != m_classIndex) {
        text.append((m_weights[i] >= 0 ? " + " : " - ")
          + Utils.doubleToString(Math.abs(m_weights[i]), 12, 4) + " * ");
        if (m_SVM.getFilterType().getSelectedTag().getID() == SMOreg.FILTER_STANDARDIZE) {
          text.append("(standardized) ");
        } else if (m_SVM.getFilterType().getSelectedTag().getID() == SMOreg.FILTER_NORMALIZE) {
          text.append("(normalized) ");
        }
        text.append(m_data.attribute(i).name() + "\n");
      }
    }
  } else {
    // non linear, print out all supportvectors
    text.append("Support vectors:\n");
    for (int i = 0; i < m_nInstances; i++) {
      if (m_alpha[i] > 0) {
        text.append("+" + m_alpha[i] + " * k[" + i + "]\n");
      }
      if (m_alphaStar[i] > 0) {
        text.append("-" + m_alphaStar[i] + " * k[" + i + "]\n");
      }
    }
  }

  text.append((m_b <= 0 ? " + " : " - ")
    + Utils.doubleToString(Math.abs(m_b), 12, 4) + "\n\n");

  text.append("\n\nNumber of kernel evaluations: " + m_nEvals);
  if (m_nCacheHits >= 0 && m_nEvals > 0) {
    double hitRatio = 1 - m_nEvals * 1.0 / (m_nCacheHits + m_nEvals);
    text.append(" (" + Utils.doubleToString(hitRatio * 100, 7, 3).trim()
      + "% cached)");
  }

  return text.toString();
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:50,代码来源:RegOptimizer.java


示例4: toString

import weka.classifiers.functions.SMOreg; //导入依赖的package包/类
/**
  * Prints out the classifier.
  *
  * @return 		a description of the classifier as a string
  */
 public String toString() {
   StringBuffer text = new StringBuffer();
   text.append("SMOreg\n\n");
   if (m_weights != null) {
     text.append("weights (not support vectors):\n");
     // it's a linear machine
     for (int i = 0; i < m_data.numAttributes(); i++) {
if (i != m_classIndex) {
  text.append((m_weights[i] >= 0 ? " + " : " - ") + Utils.doubleToString(Math.abs(m_weights[i]), 12, 4) + " * ");
  if (m_SVM.getFilterType().getSelectedTag().getID() == SMOreg.FILTER_STANDARDIZE) {
    text.append("(standardized) ");
  } else if (m_SVM.getFilterType().getSelectedTag().getID() == SMOreg.FILTER_NORMALIZE) {
    text.append("(normalized) ");
  }
  text.append(m_data.attribute(i).name() + "\n");
}
     }
   } else {
     // non linear, print out all supportvectors
     text.append("Support vectors:\n");
     for (int i = 0; i < m_nInstances; i++) {
if (m_alpha[i] > 0) {
  text.append("+" + m_alpha[i] + " * k[" + i + "]\n");
}
if (m_alphaStar[i] > 0) {
  text.append("-" + m_alphaStar[i] + " * k[" + i + "]\n");
}
     }
   }
   
   text.append((m_b<=0?" + ":" - ") + Utils.doubleToString(Math.abs(m_b), 12, 4) + "\n\n");
   
   text.append("\n\nNumber of kernel evaluations: " + m_nEvals);
   if (m_nCacheHits >= 0 && m_nEvals > 0) {
     double hitRatio = 1 - m_nEvals * 1.0 / (m_nCacheHits + m_nEvals);
     text.append(" (" + Utils.doubleToString(hitRatio * 100, 7, 3).trim() + "% cached)");
   }
   
   return text.toString();		
 }
 
开发者ID:dsibournemouth,项目名称:autoweka,代码行数:46,代码来源:RegOptimizer.java


示例5: setup

import weka.classifiers.functions.SMOreg; //导入依赖的package包/类
public static ParameterSpace setup()
{
    // configure training data reader dimension
    Map<String, Object> dimReaders = new HashMap<String, Object>();
    dimReaders.put(Constants.DIM_READER_TRAIN, STSReader.class);
    dimReaders.put(Constants.DIM_READER_TRAIN_PARAMS,
            Arrays.asList(new Object[] {
                    STSReader.PARAM_INPUT_FILES, inputFilesTrain,
                    STSReader.PARAM_GOLD_FILES, goldFilesTrain
            }));
    dimReaders.put(Constants.DIM_READER_TEST, STSReader.class);
    dimReaders.put(Constants.DIM_READER_TEST_PARAMS,
            Arrays.asList(new Object[] {
                    STSReader.PARAM_INPUT_FILES, inputFilesTest,
                    STSReader.PARAM_GOLD_FILES, goldFilesTest
            }));
    
    @SuppressWarnings("unchecked")
    Dimension<List<String>> dimClassificationArgs = Dimension.create(
            Constants.DIM_CLASSIFICATION_ARGS,
            Arrays.asList(new String[] {
                    // which classifiers should be tested
                    SMOreg.class.getName()
            }));

    @SuppressWarnings("unchecked")
    Dimension<List<String>> dimFeatureSets = Dimension.create(
            Constants.DIM_FEATURE_SET,
            Arrays.asList(new String[] {
                    // which feature extractors should be used
                    NrOfTokensFeatureExtractor.class.getName(),
                    GreedyStringTilingFeatureExtractor.class.getName()
            }));

    @SuppressWarnings("unchecked")
    ParameterSpace pSpace = new ParameterSpace(
            Dimension.createBundle("readerTrain",dimReaders),
            Dimension.create(Constants.DIM_MULTI_LABEL, false),
            Dimension.create(Constants.DIM_IS_REGRESSION, true),
            Dimension.create(Constants.DIM_DATA_WRITER, WekaDataWriter.class.getName()),
            dimFeatureSets,
            dimClassificationArgs
    );
    return pSpace;
}
 
开发者ID:zesch,项目名称:semeval,代码行数:46,代码来源:RunExperimentDKproTC.java


示例6: setSMOReg

import weka.classifiers.functions.SMOreg; //导入依赖的package包/类
/**
 * sets the parent SVM
 * 
 * @param value the parent SVM
 */
public void setSMOReg(SMOreg value) {
  m_SVM = value;
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:9,代码来源:RegOptimizer.java


示例7: setSMOReg

import weka.classifiers.functions.SMOreg; //导入依赖的package包/类
/**
 * sets the parent SVM
 * 
 * @param value	the parent SVM
 */
public void setSMOReg(SMOreg value) {
  m_SVM = value;
}
 
开发者ID:dsibournemouth,项目名称:autoweka,代码行数:9,代码来源:RegOptimizer.java



注:本文中的weka.classifiers.functions.SMOreg类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Java StorageProxyMBean类代码示例发布时间:2022-05-23
下一篇:
Java Callable类代码示例发布时间:2022-05-23
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap