本文整理汇总了Java中org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable类的典型用法代码示例。如果您正苦于以下问题:Java InMemoryLookupTable类的具体用法?Java InMemoryLookupTable怎么用?Java InMemoryLookupTable使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
InMemoryLookupTable类属于org.deeplearning4j.models.embeddings.inmemory包,在下文中一共展示了InMemoryLookupTable类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Java代码示例。
示例1: main
import org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
// Gets Path to Text file
String filePath = "c:/raw_sentences.txt";
log.info("Load & Vectorize Sentences....");
// Strip white space before and after for each line
SentenceIterator iter = UimaSentenceIterator.createWithPath(filePath);
// Split on white spaces in the line to get words
TokenizerFactory t = new DefaultTokenizerFactory();
t.setTokenPreProcessor(new CommonPreprocessor());
InMemoryLookupCache cache = new InMemoryLookupCache();
WeightLookupTable table = new InMemoryLookupTable.Builder()
.vectorLength(100)
.useAdaGrad(false)
.cache(cache)
.lr(0.025f).build();
log.info("Building model....");
Word2Vec vec = new Word2Vec.Builder()
.minWordFrequency(5).iterations(1)
.layerSize(100).lookupTable(table)
.stopWords(new ArrayList<String>())
.vocabCache(cache).seed(42)
.windowSize(5).iterate(iter).tokenizerFactory(t).build();
log.info("Fitting Word2Vec model....");
vec.fit();
log.info("Writing word vectors to text file....");
// Write word
WordVectorSerializer.writeWordVectors(vec, "word2vec.txt");
log.info("Closest Words:");
Collection<String> lst = vec.wordsNearest("man", 5);
System.out.println(lst);
double cosSim = vec.similarity("cruise", "voyage");
System.out.println(cosSim);
}
开发者ID:PacktPublishing,项目名称:Java-Data-Science-Cookbook,代码行数:41,代码来源:Word2VecRawTextExample.java
示例2: predict
import org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable; //导入依赖的package包/类
public List<Pair<String, Double>> predict(@NotNull String name, @NotNull SourceSegment source, @NotNull List<var> inputs) {
/*
Now we'll iterate over unlabeled data, and check which label it could be assigned to
Please note: for many domains it's normal to have 1 document fall into few labels at once,
with different "weight" for each.
*/
MeansBuilder meansBuilder = new MeansBuilder((InMemoryLookupTable<VocabWord>) paragraphVectors.getLookupTable(),
tokenizerFactory);
LabelSeeker seeker = new LabelSeeker(iterator.getLabelsSource().getLabels(),
(InMemoryLookupTable<VocabWord>) paragraphVectors.getLookupTable());
LabelledDocument document = new LabelledDocument();
document.setContent(signatureToText(name, inputs));
INDArray documentAsCentroid = meansBuilder.documentAsVector(document);
List<Pair<String, Double>> scores = seeker.getScores(documentAsCentroid);
return scores;
}
开发者ID:sillelien,项目名称:dollar,代码行数:21,代码来源:ParagraphVectorsClassifierExample.java
示例3: testWriteWordVectors
import org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable; //导入依赖的package包/类
@Test
@Ignore
public void testWriteWordVectors() throws IOException {
WordVectors vec = WordVectorSerializer.loadGoogleModel(binaryFile, true);
InMemoryLookupTable lookupTable = (InMemoryLookupTable) vec.lookupTable();
InMemoryLookupCache lookupCache = (InMemoryLookupCache) vec.vocab();
WordVectorSerializer.writeWordVectors(lookupTable, lookupCache, pathToWriteto);
WordVectors wordVectors = WordVectorSerializer.loadTxtVectors(new File(pathToWriteto));
double[] wordVector1 = wordVectors.getWordVector("Morgan_Freeman");
double[] wordVector2 = wordVectors.getWordVector("JA_Montalbano");
assertTrue(wordVector1.length == 300);
assertTrue(wordVector2.length == 300);
assertEquals(Doubles.asList(wordVector1).get(0), 0.044423, 1e-3);
assertEquals(Doubles.asList(wordVector2).get(0), 0.051964, 1e-3);
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:17,代码来源:WordVectorSerializerTest.java
示例4: testFromTableAndVocab
import org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable; //导入依赖的package包/类
@Test
@Ignore
public void testFromTableAndVocab() throws IOException {
WordVectors vec = WordVectorSerializer.loadGoogleModel(textFile, false);
InMemoryLookupTable lookupTable = (InMemoryLookupTable) vec.lookupTable();
InMemoryLookupCache lookupCache = (InMemoryLookupCache) vec.vocab();
WordVectors wordVectors = WordVectorSerializer.fromTableAndVocab(lookupTable, lookupCache);
double[] wordVector1 = wordVectors.getWordVector("Morgan_Freeman");
double[] wordVector2 = wordVectors.getWordVector("JA_Montalbano");
assertTrue(wordVector1.length == 300);
assertTrue(wordVector2.length == 300);
assertEquals(Doubles.asList(wordVector1).get(0), 0.044423, 1e-3);
assertEquals(Doubles.asList(wordVector2).get(0), 0.051964, 1e-3);
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:17,代码来源:WordVectorSerializerTest.java
示例5: testUnifiedLoaderArchive1
import org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable; //导入依赖的package包/类
@Test
public void testUnifiedLoaderArchive1() throws Exception {
logger.info("Executor name: {}", Nd4j.getExecutioner().getClass().getSimpleName());
File w2v = new ClassPathResource("word2vec.dl4j/file.w2v").getFile();
WordVectors vectorsLive = WordVectorSerializer.readWord2Vec(w2v);
WordVectors vectorsUnified = WordVectorSerializer.readWord2VecModel(w2v, false);
INDArray arrayLive = vectorsLive.getWordVectorMatrix("night");
INDArray arrayStatic = vectorsUnified.getWordVectorMatrix("night");
assertNotEquals(null, arrayLive);
assertEquals(arrayLive, arrayStatic);
assertEquals(null, ((InMemoryLookupTable) vectorsUnified.lookupTable()).getSyn1());
assertEquals(null, ((InMemoryLookupTable) vectorsUnified.lookupTable()).getSyn1Neg());
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:19,代码来源:WordVectorSerializerTest.java
示例6: testUnifiedLoaderArchive2
import org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable; //导入依赖的package包/类
@Test
public void testUnifiedLoaderArchive2() throws Exception {
logger.info("Executor name: {}", Nd4j.getExecutioner().getClass().getSimpleName());
File w2v = new ClassPathResource("word2vec.dl4j/file.w2v").getFile();
WordVectors vectorsLive = WordVectorSerializer.readWord2Vec(w2v);
WordVectors vectorsUnified = WordVectorSerializer.readWord2VecModel(w2v, true);
INDArray arrayLive = vectorsLive.getWordVectorMatrix("night");
INDArray arrayStatic = vectorsUnified.getWordVectorMatrix("night");
assertNotEquals(null, arrayLive);
assertEquals(arrayLive, arrayStatic);
assertNotEquals(null, ((InMemoryLookupTable) vectorsUnified.lookupTable()).getSyn1());
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:18,代码来源:WordVectorSerializerTest.java
示例7: testUnifiedLoaderText
import org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable; //导入依赖的package包/类
/**
* This method tests CSV file loading via unified loader
*
* @throws Exception
*/
@Test
public void testUnifiedLoaderText() throws Exception {
logger.info("Executor name: {}", Nd4j.getExecutioner().getClass().getSimpleName());
WordVectors vectorsLive = WordVectorSerializer.loadTxtVectors(textFile);
WordVectors vectorsUnified = WordVectorSerializer.readWord2VecModel(textFile, true);
INDArray arrayLive = vectorsLive.getWordVectorMatrix("Morgan_Freeman");
INDArray arrayStatic = vectorsUnified.getWordVectorMatrix("Morgan_Freeman");
assertNotEquals(null, arrayLive);
assertEquals(arrayLive, arrayStatic);
// we're trying EXTENDED model, but file doesn't have syn1/huffman info, so it should be silently degraded to simplified model
assertEquals(null, ((InMemoryLookupTable) vectorsUnified.lookupTable()).getSyn1());
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:22,代码来源:WordVectorSerializerTest.java
示例8: fromPair
import org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable; //导入依赖的package包/类
/**
* Load word vectors from the given pair
*
* @param pair
* the given pair
* @return a read only word vectors impl based on the given lookup table and vocab
*/
public static Word2Vec fromPair(Pair<InMemoryLookupTable, VocabCache> pair) {
Word2Vec vectors = new Word2Vec();
vectors.setLookupTable(pair.getFirst());
vectors.setVocab(pair.getSecond());
vectors.setModelUtils(new BasicModelUtils());
return vectors;
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:15,代码来源:WordVectorSerializer.java
示例9: configure
import org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable; //导入依赖的package包/类
@Override
public void configure(@NonNull VocabCache<T> vocabCache, @NonNull WeightLookupTable<T> lookupTable,
@NonNull VectorsConfiguration configuration) {
this.vocabCache = vocabCache;
this.lookupTable = lookupTable;
this.configuration = configuration;
cbow.configure(vocabCache, lookupTable, configuration);
this.window = configuration.getWindow();
this.useAdaGrad = configuration.isUseAdaGrad();
this.negative = configuration.getNegative();
this.sampling = configuration.getSampling();
this.syn0 = ((InMemoryLookupTable<T>) lookupTable).getSyn0();
this.syn1 = ((InMemoryLookupTable<T>) lookupTable).getSyn1();
this.syn1Neg = ((InMemoryLookupTable<T>) lookupTable).getSyn1Neg();
this.expTable = ((InMemoryLookupTable<T>) lookupTable).getExpTable();
this.table = ((InMemoryLookupTable<T>) lookupTable).getTable();
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:21,代码来源:DM.java
示例10: Word2VecParam
import org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable; //导入依赖的package包/类
public Word2VecParam(boolean useAdaGrad, double negative, int numWords, INDArray table, int window,
AtomicLong nextRandom, double alpha, double minAlpha, int totalWords, int lastChecked,
Broadcast<AtomicLong> wordCount, InMemoryLookupTable weights, int vectorLength,
Broadcast<double[]> expTable) {
this.useAdaGrad = useAdaGrad;
this.negative = negative;
this.numWords = numWords;
this.table = table;
this.window = window;
this.nextRandom = nextRandom;
this.alpha = alpha;
this.minAlpha = minAlpha;
this.totalWords = totalWords;
this.lastChecked = lastChecked;
this.wordCount = wordCount;
this.weights = weights;
this.vectorLength = vectorLength;
this.expTable = expTable;
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:20,代码来源:Word2VecParam.java
示例11: testGlove
import org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable; //导入依赖的package包/类
@Test
public void testGlove() throws Exception {
Glove glove = new Glove(true, 5, 100);
JavaRDD<String> corpus = sc.textFile(new ClassPathResource("raw_sentences.txt").getFile().getAbsolutePath())
.map(new Function<String, String>() {
@Override
public String call(String s) throws Exception {
return s.toLowerCase();
}
});
Pair<VocabCache<VocabWord>, GloveWeightLookupTable> table = glove.train(corpus);
WordVectors vectors = WordVectorSerializer
.fromPair(new Pair<>((InMemoryLookupTable) table.getSecond(), (VocabCache) table.getFirst()));
Collection<String> words = vectors.wordsNearest("day", 20);
assertTrue(words.contains("week"));
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:19,代码来源:GloveTest.java
示例12: useExistingWordVectors
import org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable; //导入依赖的package包/类
/**
* This method allows you to use pre-built WordVectors model (Word2Vec or GloVe) for Par2Hier.
* Existing model will be transferred into new model before training starts.
*
* PLEASE NOTE: Non-normalized model is recommended to use here.
*
* @param vec existing WordVectors model
* @return a builder
*/
@Override
@SuppressWarnings("unchecked")
public Builder useExistingWordVectors(@NonNull WordVectors vec) {
if (((InMemoryLookupTable<VocabWord>) vec.lookupTable()).getSyn1() == null &&
((InMemoryLookupTable<VocabWord>) vec.lookupTable()).getSyn1Neg() == null) {
throw new ND4JIllegalStateException("Model being passed as existing has no syn1/syn1Neg available");
}
this.existingVectors = vec;
return this;
}
开发者ID:tteofili,项目名称:par2hier,代码行数:21,代码来源:Par2Hier.java
示例13: checkUnlabeledData
import org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable; //导入依赖的package包/类
void checkUnlabeledData() throws FileNotFoundException {
/*
At this point we assume that we have model built and we can check
which categories our unlabeled document falls into.
So we'll start loading our unlabeled documents and checking them
*/
ClassPathResource unClassifiedResource = new ClassPathResource("paravec/unlabeled");
FileLabelAwareIterator unClassifiedIterator = new FileLabelAwareIterator.Builder()
.addSourceFolder(unClassifiedResource.getFile())
.build();
/*
Now we'll iterate over unlabeled data, and check which label it could be assigned to
Please note: for many domains it's normal to have 1 document fall into few labels at once,
with different "weight" for each.
*/
MeansBuilder meansBuilder = new MeansBuilder(
(InMemoryLookupTable<VocabWord>) paragraphVectors.getLookupTable(),
tokenizerFactory);
LabelSeeker seeker = new LabelSeeker(iterator.getLabelsSource().getLabels(),
(InMemoryLookupTable<VocabWord>) paragraphVectors.getLookupTable());
while (unClassifiedIterator.hasNextDocument()) {
LabelledDocument document = unClassifiedIterator.nextDocument();
INDArray documentAsCentroid = meansBuilder.documentAsVector(document);
List<Pair<String, Double>> scores = seeker.getScores(documentAsCentroid);
/*
please note, document.getLabel() is used just to show which document we're looking at now,
as a substitute for printing out the whole document name.
So, labels on these two documents are used like titles,
just to visualize our classification done properly
*/
log.info("Document '" + document.getLabel() + "' falls into the following categories: ");
for (Pair<String, Double> score : scores) {
log.info(" " + score.getFirst() + ": " + score.getSecond());
}
}
}
开发者ID:sillelien,项目名称:dollar,代码行数:41,代码来源:ParagraphVectorsClassifierExample.java
示例14: writeWordVectors
import org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable; //导入依赖的package包/类
/**
* Writes the word vectors to the given path. Note that this assumes an in memory cache
*
* @param lookupTable
* @param cache
*
* @param path
* the path to write
* @throws IOException
*/
@Deprecated
public static void writeWordVectors(InMemoryLookupTable lookupTable, InMemoryLookupCache cache, String path)
throws IOException {
BufferedWriter write = new BufferedWriter(
new OutputStreamWriter(new FileOutputStream(new File(path), false), "UTF-8"));
for (int i = 0; i < lookupTable.getSyn0().rows(); i++) {
String word = cache.wordAtIndex(i);
if (word == null) {
continue;
}
StringBuilder sb = new StringBuilder();
sb.append(word.replaceAll(" ", whitespaceReplacement));
sb.append(" ");
INDArray wordVector = lookupTable.vector(word);
for (int j = 0; j < wordVector.length(); j++) {
sb.append(wordVector.getDouble(j));
if (j < wordVector.length() - 1) {
sb.append(" ");
}
}
sb.append("\n");
write.write(sb.toString());
}
write.flush();
write.close();
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:39,代码来源:WordVectorSerializer.java
示例15: configure
import org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable; //导入依赖的package包/类
@Override
public void configure(@NonNull VocabCache<T> vocabCache, @NonNull WeightLookupTable<T> lookupTable,
@NonNull VectorsConfiguration configuration) {
this.vocabCache = vocabCache;
this.lookupTable = lookupTable;
this.configuration = configuration;
this.window = configuration.getWindow();
this.useAdaGrad = configuration.isUseAdaGrad();
this.negative = configuration.getNegative();
this.sampling = configuration.getSampling();
if (configuration.getNegative() > 0) {
if (((InMemoryLookupTable<T>) lookupTable).getSyn1Neg() == null) {
logger.info("Initializing syn1Neg...");
((InMemoryLookupTable<T>) lookupTable).setUseHS(configuration.isUseHierarchicSoftmax());
((InMemoryLookupTable<T>) lookupTable).setNegative(configuration.getNegative());
((InMemoryLookupTable<T>) lookupTable).resetWeights(false);
}
}
this.syn0 = new DeviceLocalNDArray(((InMemoryLookupTable<T>) lookupTable).getSyn0());
this.syn1 = new DeviceLocalNDArray(((InMemoryLookupTable<T>) lookupTable).getSyn1());
this.syn1Neg = new DeviceLocalNDArray(((InMemoryLookupTable<T>) lookupTable).getSyn1Neg());
this.expTable = new DeviceLocalNDArray(Nd4j.create(((InMemoryLookupTable<T>) lookupTable).getExpTable()));
this.table = new DeviceLocalNDArray(((InMemoryLookupTable<T>) lookupTable).getTable());
this.variableWindows = configuration.getVariableWindows();
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:30,代码来源:CBOW.java
示例16: configure
import org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable; //导入依赖的package包/类
/**
* SkipGram initialization over given vocabulary and WeightLookupTable
*
* @param vocabCache
* @param lookupTable
* @param configuration
*/
@Override
public void configure(@NonNull VocabCache<T> vocabCache, @NonNull WeightLookupTable<T> lookupTable,
@NonNull VectorsConfiguration configuration) {
this.vocabCache = vocabCache;
this.lookupTable = lookupTable;
this.configuration = configuration;
if (configuration.getNegative() > 0) {
if (((InMemoryLookupTable<T>) lookupTable).getSyn1Neg() == null) {
log.info("Initializing syn1Neg...");
((InMemoryLookupTable<T>) lookupTable).setUseHS(configuration.isUseHierarchicSoftmax());
((InMemoryLookupTable<T>) lookupTable).setNegative(configuration.getNegative());
((InMemoryLookupTable<T>) lookupTable).resetWeights(false);
}
}
this.expTable = new DeviceLocalNDArray(Nd4j.create(((InMemoryLookupTable<T>) lookupTable).getExpTable()));
this.syn0 = new DeviceLocalNDArray(((InMemoryLookupTable<T>) lookupTable).getSyn0());
this.syn1 = new DeviceLocalNDArray(((InMemoryLookupTable<T>) lookupTable).getSyn1());
this.syn1Neg = new DeviceLocalNDArray(((InMemoryLookupTable<T>) lookupTable).getSyn1Neg());
this.table = new DeviceLocalNDArray(((InMemoryLookupTable<T>) lookupTable).getTable());
this.window = configuration.getWindow();
this.useAdaGrad = configuration.isUseAdaGrad();
this.negative = configuration.getNegative();
this.sampling = configuration.getSampling();
this.variableWindows = configuration.getVariableWindows();
this.vectorLength = configuration.getLayersSize();
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:40,代码来源:SkipGram.java
示例17: useExistingWordVectors
import org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable; //导入依赖的package包/类
/**
* This method allows you to use pre-built WordVectors model (Word2Vec or GloVe) for ParagraphVectors.
* Existing model will be transferred into new model before training starts.
*
* PLEASE NOTE: Non-normalized model is recommended to use here.
*
* @param vec existing WordVectors model
* @return
*/
@Override
@SuppressWarnings("unchecked")
public Builder useExistingWordVectors(@NonNull WordVectors vec) {
if (((InMemoryLookupTable<VocabWord>) vec.lookupTable()).getSyn1() == null
&& ((InMemoryLookupTable<VocabWord>) vec.lookupTable()).getSyn1Neg() == null)
throw new ND4JIllegalStateException("Model being passed as existing has no syn1/syn1Neg available");
this.existingVectors = vec;
return this;
}
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:20,代码来源:ParagraphVectors.java
示例18: main
import org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
ClassPathResource resource = new ClassPathResource("paravec/labeled");
iter = new FileLabelAwareIterator.Builder()
.addSourceFolder(resource.getFile())
.build();
tFact = new DefaultTokenizerFactory();
tFact.setTokenPreProcessor(new CommonPreprocessor());
pVect = new ParagraphVectors.Builder()
.learningRate(0.025)
.minLearningRate(0.001)
.batchSize(1000)
.epochs(20)
.iterate(iter)
.trainWordVectors(true)
.tokenizerFactory(tFact)
.build();
pVect.fit();
ClassPathResource unlabeledText = new ClassPathResource("paravec/unlabeled");
FileLabelAwareIterator unlabeledIter = new FileLabelAwareIterator.Builder()
.addSourceFolder(unlabeledText.getFile())
.build();
MeansBuilder mBuilder = new MeansBuilder(
(InMemoryLookupTable<VocabWord>) pVect.getLookupTable(),
tFact);
LabelSeeker lSeeker = new LabelSeeker(iter.getLabelsSource().getLabels(),
(InMemoryLookupTable<VocabWord>) pVect.getLookupTable());
while (unlabeledIter.hasNextDocument()) {
LabelledDocument doc = unlabeledIter.nextDocument();
INDArray docCentroid = mBuilder.documentAsVector(doc);
List<Pair<String, Double>> scores = lSeeker.getScores(docCentroid);
out.println("Document '" + doc.getLabel() + "' falls into the following categories: ");
for (Pair<String, Double> score : scores) {
out.println(" " + score.getFirst() + ": " + score.getSecond());
}
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-End-to-Endguide-for-Java-developers,代码行数:49,代码来源:ParagraphVectorsClassifierExample.java
示例19: MeansBuilder
import org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable; //导入依赖的package包/类
public MeansBuilder(@NonNull InMemoryLookupTable<VocabWord> lookupTable,
@NonNull TokenizerFactory tokenizerFactory) {
this.lookupTable = lookupTable;
this.vocabCache = lookupTable.getVocabCache();
this.tokenizerFactory = tokenizerFactory;
}
开发者ID:tteofili,项目名称:par2hier,代码行数:7,代码来源:MeansBuilder.java
示例20: LabelSeeker
import org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable; //导入依赖的package包/类
public LabelSeeker(@NonNull List<String> labelsUsed, @NonNull InMemoryLookupTable<VocabWord> lookupTable) {
if (labelsUsed.isEmpty()) throw new IllegalStateException("You can't have 0 labels used for ParagraphVectors");
this.lookupTable = lookupTable;
this.labelsUsed = labelsUsed;
}
开发者ID:tteofili,项目名称:par2hier,代码行数:6,代码来源:LabelSeeker.java
注:本文中的org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论