• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Java FixedWindows类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Java中com.google.cloud.dataflow.sdk.transforms.windowing.FixedWindows的典型用法代码示例。如果您正苦于以下问题:Java FixedWindows类的具体用法?Java FixedWindows怎么用?Java FixedWindows使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



FixedWindows类属于com.google.cloud.dataflow.sdk.transforms.windowing包,在下文中一共展示了FixedWindows类的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Java代码示例。

示例1: apply

import com.google.cloud.dataflow.sdk.transforms.windowing.FixedWindows; //导入依赖的package包/类
@Override
public PCollection<KV<String, Integer>> apply(PCollection<GameEvent> infos) {
  return infos
      .apply(
          "LeaderboardTeamFixedWindows",
          Window.<GameEvent>into(FixedWindows.of(teamWindowDuration))
              // We will get early (speculative) results as well as cumulative
              // processing of late data.
              .triggering(
                  AfterWatermark.pastEndOfWindow()
                      .withEarlyFirings(
                          AfterProcessingTime.pastFirstElementInPane().plusDelayOf(TEN_SECONDS))
                      .withLateFirings(
                          AfterProcessingTime.pastFirstElementInPane()
                              .plusDelayOf(THIRTY_SECONDS)))
              .withAllowedLateness(allowedLateness)
              .accumulatingFiredPanes())
      // Extract and sum teamname/score pairs from the event data.
      .apply("ExtractTeamScore", new Exercise1.ExtractAndSumScore("team"));
}
 
开发者ID:mdvorsky,项目名称:DataflowSME,代码行数:21,代码来源:Exercise4.java


示例2: main

import com.google.cloud.dataflow.sdk.transforms.windowing.FixedWindows; //导入依赖的package包/类
public static void main(String[] args) {
  CustomPipelineOptions options =
      PipelineOptionsFactory.fromArgs(args).withValidation().as(CustomPipelineOptions.class);
  Pipeline p = Pipeline.create(options);

  p.apply(PubsubIO.Read.named("read from PubSub")
      .topic(String.format("projects/%s/topics/%s", options.getSourceProject(), options.getSourceTopic()))
      .timestampLabel("ts")
      .withCoder(TableRowJsonCoder.of()))

   .apply("window 1s", Window.into(FixedWindows.of(Duration.standardSeconds(1))))
   .apply("mark rides", MapElements.via(new MarkRides()))
   .apply("count similar", Count.perKey())
   .apply("format rides", MapElements.via(new TransformRides()))

   .apply(PubsubIO.Write.named("WriteToPubsub")
      .topic(String.format("projects/%s/topics/%s", options.getSinkProject(), options.getSinkTopic()))
      .withCoder(TableRowJsonCoder.of()));

  p.run();
}
 
开发者ID:googlecodelabs,项目名称:cloud-dataflow-nyc-taxi-tycoon,代码行数:22,代码来源:CountRides.java


示例3: doVisitTransform

import com.google.cloud.dataflow.sdk.transforms.windowing.FixedWindows; //导入依赖的package包/类
@Override
protected <PT extends PTransform<? super PInput, POutput>> void
    doVisitTransform(TransformTreeNode node) {
  @SuppressWarnings("unchecked")
  PT transform = (PT) node.getTransform();
  @SuppressWarnings("unchecked")
  Class<PT> transformClass = (Class<PT>) (Class<?>) transform.getClass();
  if (transformClass.isAssignableFrom(Window.Bound.class)) {
    WindowFn<?, ?> windowFn = WINDOW_FG.get("windowFn", transform);
    if (windowFn instanceof FixedWindows) {
      setBatchDuration(((FixedWindows) windowFn).getSize());
    } else if (windowFn instanceof SlidingWindows) {
      if (((SlidingWindows) windowFn).getOffset().getMillis() > 0) {
        throw new UnsupportedOperationException("Spark does not support window offsets");
      }
      // Sliding window size might as well set the batch duration. Applying the transformation
      // will add the "slide"
      setBatchDuration(((SlidingWindows) windowFn).getSize());
    } else if (!(windowFn instanceof GlobalWindows)) {
      throw new IllegalStateException("Windowing function not supported: " + windowFn);
    }
  }
}
 
开发者ID:shakamunyi,项目名称:spark-dataflow,代码行数:24,代码来源:StreamingWindowPipelineDetector.java


示例4: testRun

import com.google.cloud.dataflow.sdk.transforms.windowing.FixedWindows; //导入依赖的package包/类
@Test
public void testRun() throws Exception {
  SparkPipelineOptions options = SparkPipelineOptionsFactory.create();
  options.setRunner(SparkPipelineRunner.class);
  Pipeline p = Pipeline.create(PipelineOptionsFactory.create());
  PCollection<String> inputWords = p.apply(Create.timestamped(WORDS, TIMESTAMPS))
          .setCoder(StringUtf8Coder.of());
  PCollection<String> windowedWords = inputWords
          .apply(Window.<String>into(FixedWindows.of(Duration.standardMinutes(1))));

  PCollection<String> output = windowedWords.apply(new SimpleWordCountTest.CountWords());

  DataflowAssert.that(output).containsInAnyOrder(EXPECTED_COUNT_SET);

  EvaluationResult res = SparkPipelineRunner.create().run(p);
  res.close();
}
 
开发者ID:shakamunyi,项目名称:spark-dataflow,代码行数:18,代码来源:WindowedWordCountTest.java


示例5: testRun

import com.google.cloud.dataflow.sdk.transforms.windowing.FixedWindows; //导入依赖的package包/类
@Test
public void testRun() throws Exception {
  SparkStreamingPipelineOptions options = SparkStreamingPipelineOptionsFactory.create();
  options.setAppName(this.getClass().getSimpleName());
  options.setRunner(SparkPipelineRunner.class);
  options.setTimeout(TEST_TIMEOUT_MSEC);// run for one interval
  Pipeline p = Pipeline.create(options);

  PCollection<String> inputWords =
      p.apply(CreateStream.fromQueue(WORDS_QUEUE)).setCoder(StringUtf8Coder.of());
  PCollection<String> windowedWords = inputWords
      .apply(Window.<String>into(FixedWindows.of(Duration.standardSeconds(1))));

  PCollection<String> output = windowedWords.apply(new SimpleWordCountTest.CountWords());

  DataflowAssert.thatIterable(output.apply(View.<String>asIterable()))
      .containsInAnyOrder(EXPECTED_COUNT_SET);

  EvaluationResult res = SparkPipelineRunner.create(options).run(p);
  res.close();

  DataflowAssertStreaming.assertNoFailures(res);
}
 
开发者ID:shakamunyi,项目名称:spark-dataflow,代码行数:24,代码来源:SimpleStreamingWordCountTest.java


示例6: main

import com.google.cloud.dataflow.sdk.transforms.windowing.FixedWindows; //导入依赖的package包/类
public static void main(String[] args) {
  CustomPipelineOptions options =
      PipelineOptionsFactory.fromArgs(args).withValidation().as(CustomPipelineOptions.class);
  Pipeline p = Pipeline.create(options);

  p.apply(PubsubIO.Read.named("read from PubSub")
      .topic(String.format("projects/%s/topics/%s", options.getSourceProject(), options.getSourceTopic()))
      .timestampLabel("ts")
      .withCoder(TableRowJsonCoder.of()))

   .apply("window 1s", Window.into(FixedWindows.of(Duration.standardSeconds(1))))

   .apply("parse timestamps",
      MapElements.via(
        (TableRow e) ->
          Instant.from(DateTimeFormatter.ISO_DATE_TIME.parse(e.get("timestamp").toString())).toEpochMilli())
      .withOutputType(TypeDescriptor.of(Long.class)))

   .apply("max timestamp in window", Max.longsGlobally().withoutDefaults())

   .apply("transform",
      MapElements.via(
        (Long t) -> {
          TableRow ride = new TableRow();
          ride.set("timestamp", Instant.ofEpochMilli(t).toString());
          return ride;
        })
      .withOutputType(TypeDescriptor.of(TableRow.class)))

   .apply(PubsubIO.Write.named("write to PubSub")
      .topic(String.format("projects/%s/topics/%s", options.getSinkProject(), options.getSinkTopic()))
      .withCoder(TableRowJsonCoder.of()));
  p.run();
}
 
开发者ID:googlecodelabs,项目名称:cloud-dataflow-nyc-taxi-tycoon,代码行数:35,代码来源:TimestampRides.java


示例7: generateCompleteWindowData

import com.google.cloud.dataflow.sdk.transforms.windowing.FixedWindows; //导入依赖的package包/类
public PCollection<KV<String, TSProto>> generateCompleteWindowData(Pipeline pipeline,
    List<KV<String, TSProto>> data, WorkPacketConfig packetConfig) {

  LOG.info("Check to see that time streams with missing 'ticks' have been corrected");

  PCollection<KV<String, TSProto>> tsData = setupDataInput(pipeline, data);


  PCollection<KV<String, TSProto>> windowedData =
      tsData.apply("CandleResolutionWindow", Window.<KV<String, TSProto>>into(FixedWindows
          .of(Duration.standardSeconds(((FXTimeSeriesPipelineOptions) pipeline.getOptions())
              .getCandleResolution()))));

  // Determine streams that are missing in this Window and generate values for them

  PCollection<KV<String, TSProto>> generatedValues =
      windowedData
          .apply(
              "DetectMissingTimeSeriesValues",
              Combine.globally(new DetectMissingTimeSeriesValuesCombiner(packetConfig))
                  .withoutDefaults()).apply(ParDo.of(new CreateMissingTimeSeriesValuesDoFn()))
          .setName("CreateMissingTimeSeriesValues");

  // Flatten the live streams and the generated streams together

  PCollection<KV<String, TSProto>> completeWindowData =
      PCollectionList.of(windowedData).and(generatedValues)
          .apply("MergeGeneratedLiveValues", Flatten.<KV<String, TSProto>>pCollections());


  return completeWindowData;
}
 
开发者ID:GoogleCloudPlatform,项目名称:data-timeseries-java,代码行数:33,代码来源:FXTimeSeriesPipelineSRGTests.java


示例8: testRun

import com.google.cloud.dataflow.sdk.transforms.windowing.FixedWindows; //导入依赖的package包/类
@Test
public void testRun() throws Exception {
  // test read from Kafka
  SparkStreamingPipelineOptions options = SparkStreamingPipelineOptionsFactory.create();
  options.setAppName(this.getClass().getSimpleName());
  options.setRunner(SparkPipelineRunner.class);
  options.setTimeout(TEST_TIMEOUT_MSEC);// run for one interval
  Pipeline p = Pipeline.create(options);

  Map<String, String> kafkaParams = ImmutableMap.of(
          "metadata.broker.list", EMBEDDED_KAFKA_CLUSTER.getBrokerList(),
          "auto.offset.reset", "smallest"
  );

  PCollection<KV<String, String>> kafkaInput = p.apply(KafkaIO.Read.from(StringDecoder.class,
      StringDecoder.class, String.class, String.class, Collections.singleton(TOPIC),
      kafkaParams));
  PCollection<KV<String, String>> windowedWords = kafkaInput
      .apply(Window.<KV<String, String>>into(FixedWindows.of(Duration.standardSeconds(1))));

  PCollection<String> formattedKV = windowedWords.apply(ParDo.of(new FormatKVFn()));

  DataflowAssert.thatIterable(formattedKV.apply(View.<String>asIterable()))
      .containsInAnyOrder(EXPECTED);

  EvaluationResult res = SparkPipelineRunner.create(options).run(p);
  res.close();

  DataflowAssertStreaming.assertNoFailures(res);
}
 
开发者ID:shakamunyi,项目名称:spark-dataflow,代码行数:31,代码来源:KafkaStreamingTest.java


示例9: testRun

import com.google.cloud.dataflow.sdk.transforms.windowing.FixedWindows; //导入依赖的package包/类
@Test
public void testRun() throws Exception {
  SparkStreamingPipelineOptions options = SparkStreamingPipelineOptionsFactory.create();
  options.setAppName(this.getClass().getSimpleName());
  options.setRunner(SparkPipelineRunner.class);
  options.setTimeout(TEST_TIMEOUT_MSEC);// run for one interval
  Pipeline p = Pipeline.create(options);

  PCollection<String> w1 =
          p.apply(CreateStream.fromQueue(WORDS_QUEUE_1)).setCoder(StringUtf8Coder.of());
  PCollection<String> windowedW1 =
          w1.apply(Window.<String>into(FixedWindows.of(Duration.standardSeconds(1))));
  PCollection<String> w2 =
          p.apply(CreateStream.fromQueue(WORDS_QUEUE_2)).setCoder(StringUtf8Coder.of());
  PCollection<String> windowedW2 =
          w2.apply(Window.<String>into(FixedWindows.of(Duration.standardSeconds(1))));
  PCollectionList<String> list = PCollectionList.of(windowedW1).and(windowedW2);
  PCollection<String> union = list.apply(Flatten.<String>pCollections());

  DataflowAssert.thatIterable(union.apply(View.<String>asIterable()))
          .containsInAnyOrder(EXPECTED_UNION);

  EvaluationResult res = SparkPipelineRunner.create(options).run(p);
  res.close();

  DataflowAssertStreaming.assertNoFailures(res);
}
 
开发者ID:shakamunyi,项目名称:spark-dataflow,代码行数:28,代码来源:FlattenStreamingTest.java


示例10: main

import com.google.cloud.dataflow.sdk.transforms.windowing.FixedWindows; //导入依赖的package包/类
public static void main(String[] args) throws Exception {

    Exercise6Options options =
        PipelineOptionsFactory.fromArgs(args).withValidation().as(Exercise6Options.class);
    // Enforce that this pipeline is always run in streaming mode.
    options.setStreaming(true);
    // Allow the pipeline to be cancelled automatically.
    options.setRunner(DataflowPipelineRunner.class);
    Pipeline pipeline = Pipeline.create(options);

    TableReference sessionsTable = new TableReference();
    sessionsTable.setDatasetId(options.getOutputDataset());
    sessionsTable.setProjectId(options.getProject());
    sessionsTable.setTableId(options.getOutputTableName());

    PCollection<GameEvent> rawEvents = pipeline.apply(new Exercise3.ReadGameEvents(options));

    // Extract username/score pairs from the event stream
    PCollection<KV<String, Integer>> userEvents =
        rawEvents.apply(
            "ExtractUserScore",
            MapElements.via((GameEvent gInfo) -> KV.of(gInfo.getUser(), gInfo.getScore()))
                .withOutputType(new TypeDescriptor<KV<String, Integer>>() {}));

    // Detect user sessions-- that is, a burst of activity separated by a gap from further
    // activity. Find and record the mean session lengths.
    // This information could help the game designers track the changing user engagement
    // as their set of games changes.
    userEvents
        .apply(
            Window.named("WindowIntoSessions")
                .<KV<String, Integer>>into(
                    Sessions.withGapDuration(Duration.standardMinutes(options.getSessionGap())))
                .withOutputTimeFn(OutputTimeFns.outputAtEndOfWindow()))
        // For this use, we care only about the existence of the session, not any particular
        // information aggregated over it, so the following is an efficient way to do that.
        .apply(Combine.perKey(x -> 0))
        // Get the duration per session.
        .apply("UserSessionActivity", ParDo.of(new UserSessionInfoFn()))
        // Re-window to process groups of session sums according to when the sessions complete.
        .apply(
            Window.named("WindowToExtractSessionMean")
                .<Integer>into(
                    FixedWindows.of(
                        Duration.standardMinutes(options.getUserActivityWindowDuration()))))
        // Find the mean session duration in each window.
        .apply(Mean.<Integer>globally().withoutDefaults())
        // Write this info to a BigQuery table.
        .apply(ParDo.named("FormatSessions").of(new FormatSessionWindowFn()))
        .apply(
            BigQueryIO.Write.to(sessionsTable)
                .withSchema(FormatSessionWindowFn.getSchema())
                .withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)
                .withWriteDisposition(WriteDisposition.WRITE_APPEND));

    // Run the pipeline and wait for the pipeline to finish; capture cancellation requests from the
    // command line.
    PipelineResult result = pipeline.run();
  }
 
开发者ID:mdvorsky,项目名称:DataflowSME,代码行数:60,代码来源:Exercise6.java


示例11: main

import com.google.cloud.dataflow.sdk.transforms.windowing.FixedWindows; //导入依赖的package包/类
public static void main(String[] args) throws Exception {

    Exercise5Options options =
        PipelineOptionsFactory.fromArgs(args).withValidation().as(Exercise5Options.class);
    // Enforce that this pipeline is always run in streaming mode.
    options.setStreaming(true);
    // Allow the pipeline to be cancelled automatically.
    options.setRunner(DataflowPipelineRunner.class);
    Pipeline pipeline = Pipeline.create(options);

    TableReference teamTable = new TableReference();
    teamTable.setDatasetId(options.getOutputDataset());
    teamTable.setProjectId(options.getProject());
    teamTable.setTableId(options.getOutputTableName());

    PCollection<GameEvent> rawEvents = pipeline.apply(new Exercise3.ReadGameEvents(options));

    // Extract username/score pairs from the event stream
    PCollection<KV<String, Integer>> userEvents =
        rawEvents.apply(
            "ExtractUserScore",
            MapElements.via((GameEvent gInfo) -> KV.of(gInfo.getUser(), gInfo.getScore()))
                .withOutputType(new TypeDescriptor<KV<String, Integer>>() {}));

    // Calculate the total score per user over fixed windows, and
    // cumulative updates for late data.
    final PCollectionView<Map<String, Integer>> spammersView =
        userEvents
            .apply(
                Window.named("FixedWindowsUser")
                    .<KV<String, Integer>>into(
                        FixedWindows.of(
                            Duration.standardMinutes(options.getFixedWindowDuration()))))

            // Filter out everyone but those with (SCORE_WEIGHT * avg) clickrate.
            // These might be robots/spammers.
            .apply("CalculateSpammyUsers", new CalculateSpammyUsers())
            // Derive a view from the collection of spammer users. It will be used as a side input
            // in calculating the team score sums, below.
            .apply("CreateSpammersView", View.<String, Integer>asMap());

    // Calculate the total score per team over fixed windows,
    // and emit cumulative updates for late data. Uses the side input derived above-- the set of
    // suspected robots-- to filter out scores from those users from the sum.
    // Write the results to BigQuery.
    rawEvents
        .apply(
            Window.named("WindowIntoFixedWindows")
                .<GameEvent>into(
                    FixedWindows.of(Duration.standardMinutes(options.getFixedWindowDuration()))))
        // Filter out the detected spammer users, using the side input derived above.
        .apply(
            ParDo.named("FilterOutSpammers")
                .withSideInputs(spammersView)
                .of(
                    new DoFn<GameEvent, GameEvent>() {
                      @Override
                      public void processElement(ProcessContext c) {
                        // If the user is not in the spammers Map, output the data element.
                        if (c.sideInput(spammersView).get(c.element().getUser().trim()) == null) {
                          c.output(c.element());
                        }
                      }
                    }))
        // Extract and sum teamname/score pairs from the event data.
        .apply("ExtractTeamScore", new Exercise1.ExtractAndSumScore("team"))
        // Write the result to BigQuery
        .apply(ParDo.named("FormatTeamWindows").of(new FormatTeamWindowFn()))
        .apply(
            BigQueryIO.Write.to(teamTable)
                .withSchema(FormatTeamWindowFn.getSchema())
                .withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)
                .withWriteDisposition(WriteDisposition.WRITE_APPEND));

    // Run the pipeline and wait for the pipeline to finish; capture cancellation requests from the
    // command line.
    PipelineResult result = pipeline.run();
  }
 
开发者ID:mdvorsky,项目名称:DataflowSME,代码行数:79,代码来源:Exercise5.java


示例12: apply

import com.google.cloud.dataflow.sdk.transforms.windowing.FixedWindows; //导入依赖的package包/类
@Override
public PCollection<KV<String, Integer>> apply(PCollection<GameEvent> input) {
  return input
      .apply(Window.into(FixedWindows.of(duration)))
      .apply("ExtractTeamScore", new Exercise1.ExtractAndSumScore("team"));
}
 
开发者ID:mdvorsky,项目名称:DataflowSME,代码行数:7,代码来源:Exercise2.java


示例13: main

import com.google.cloud.dataflow.sdk.transforms.windowing.FixedWindows; //导入依赖的package包/类
public static void main(String[] args) throws Exception {

    Exercise5Options options =
        PipelineOptionsFactory.fromArgs(args).withValidation().as(Exercise5Options.class);
    // Enforce that this pipeline is always run in streaming mode.
    options.setStreaming(true);
    // Allow the pipeline to be cancelled automatically.
    options.setRunner(DataflowPipelineRunner.class);
    Pipeline pipeline = Pipeline.create(options);

    TableReference teamTable = new TableReference();
    teamTable.setDatasetId(options.getOutputDataset());
    teamTable.setProjectId(options.getProject());
    teamTable.setTableId(options.getOutputTableName());

    PCollection<GameEvent> rawEvents = pipeline.apply(new Exercise3.ReadGameEvents(options));

    // Extract username/score pairs from the event stream
    PCollection<KV<String, Integer>> userEvents =
        rawEvents.apply(
            "ExtractUserScore",
            MapElements.via((GameEvent gInfo) -> KV.of(gInfo.getUser(), gInfo.getScore()))
                .withOutputType(new TypeDescriptor<KV<String, Integer>>() {}));

    // Calculate the total score per user over fixed windows, and
    // cumulative updates for late data.
    final PCollectionView<Map<String, Integer>> spammersView =
        userEvents
            .apply(
                Window.named("FixedWindowsUser")
                    .<KV<String, Integer>>into(
                        FixedWindows.of(
                            Duration.standardMinutes(options.getFixedWindowDuration()))))

            // Filter out everyone but those with (SCORE_WEIGHT * avg) clickrate.
            // These might be robots/spammers.
            .apply("CalculateSpammyUsers", new CalculateSpammyUsers())
            // Derive a view from the collection of spammer users. It will be used as a side input
            // in calculating the team score sums, below.
            .apply("CreateSpammersView", View.<String, Integer>asMap());

    // [START EXERCISE 5 PART b]:
    // Calculate the total score per team over fixed windows,
    // and emit cumulative updates for late data. Uses the side input derived above-- the set of
    // suspected robots-- to filter out scores from those users from the sum.
    // Write the results to BigQuery.
    rawEvents
        .apply(
            Window.named("WindowIntoFixedWindows")
                .<GameEvent>into(
                    FixedWindows.of(Duration.standardMinutes(options.getFixedWindowDuration()))))
        // Filter out the detected spammer users, using the side input derived above.
        //  Use ParDo with spammersView side input to filter out spammers.
        .apply(/* TODO: YOUR CODE GOES HERE */ new ChangeMe<PCollection<GameEvent>, GameEvent>())
        // Extract and sum teamname/score pairs from the event data.
        .apply("ExtractTeamScore", new Exercise1.ExtractAndSumScore("team"))
        // Write the result to BigQuery
        .apply(ParDo.named("FormatTeamWindows").of(new FormatTeamWindowFn()))
        .apply(
            BigQueryIO.Write.to(teamTable)
                .withSchema(FormatTeamWindowFn.getSchema())
                .withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)
                .withWriteDisposition(WriteDisposition.WRITE_APPEND));
    // [START EXERCISE 5 PART b]:

    // Run the pipeline and wait for the pipeline to finish; capture cancellation requests from the
    // command line.
    PipelineResult result = pipeline.run();
  }
 
开发者ID:mdvorsky,项目名称:DataflowSME,代码行数:70,代码来源:Exercise5.java


示例14: main

import com.google.cloud.dataflow.sdk.transforms.windowing.FixedWindows; //导入依赖的package包/类
public static void main(String[] args) throws IOException {
  Options options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class);
  options.setBigQuerySchema(getSchema());
  // DataflowExampleUtils creates the necessary input sources to simplify execution of this
  // Pipeline.
  DataflowExampleUtils exampleDataflowUtils = new DataflowExampleUtils(options,
    options.isUnbounded());

  Pipeline pipeline = Pipeline.create(options);

  /**
   * Concept #1: the Dataflow SDK lets us run the same pipeline with either a bounded or
   * unbounded input source.
   */
  PCollection<String> input;
  if (options.isUnbounded()) {
    LOG.info("Reading from PubSub.");
    /**
     * Concept #3: Read from the PubSub topic. A topic will be created if it wasn't
     * specified as an argument. The data elements' timestamps will come from the pubsub
     * injection.
     */
    input = pipeline
        .apply(PubsubIO.Read.topic(options.getPubsubTopic()));
  } else {
    /** Else, this is a bounded pipeline. Read from the GCS file. */
    input = pipeline
        .apply(TextIO.Read.from(options.getInputFile()))
        // Concept #2: Add an element timestamp, using an artificial time just to show windowing.
        // See AddTimestampFn for more detail on this.
        .apply(ParDo.of(new AddTimestampFn()));
  }

  /**
   * Concept #4: Window into fixed windows. The fixed window size for this example defaults to 1
   * minute (you can change this with a command-line option). See the documentation for more
   * information on how fixed windows work, and for information on the other types of windowing
   * available (e.g., sliding windows).
   */
  PCollection<String> windowedWords = input
    .apply(Window.<String>into(
      FixedWindows.of(Duration.standardMinutes(options.getWindowSize()))));

  /**
   * Concept #5: Re-use our existing CountWords transform that does not have knowledge of
   * windows over a PCollection containing windowed values.
   */
  PCollection<KV<String, Long>> wordCounts = windowedWords.apply(new WordCount.CountWords());

  /**
   * Concept #6: Format the results for a BigQuery table, then write to BigQuery.
   * The BigQuery output source supports both bounded and unbounded data.
   */
  wordCounts.apply(ParDo.of(new FormatAsTableRowFn()))
      .apply(BigQueryIO.Write.to(getTableReference(options)).withSchema(getSchema()));

  PipelineResult result = pipeline.run();

  /**
   * To mock unbounded input from PubSub, we'll now start an auxiliary 'injector' pipeline that
   * runs for a limited time, and publishes to the input PubSub topic.
   *
   * With an unbounded input source, you will need to explicitly shut down this pipeline when you
   * are done with it, so that you do not continue to be charged for the instances. You can do
   * this via a ctrl-C from the command line, or from the developer's console UI for Dataflow
   * pipelines. The PubSub topic will also be deleted at this time.
   */
  exampleDataflowUtils.mockUnboundedSource(options.getInputFile(), result);
}
 
开发者ID:sinmetal,项目名称:iron-hippo,代码行数:70,代码来源:WindowedWordCount.java



注:本文中的com.google.cloud.dataflow.sdk.transforms.windowing.FixedWindows类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Java UpdateRequest类代码示例发布时间:2022-05-23
下一篇:
Java SLSRunner类代码示例发布时间:2022-05-23
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap