• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Java AttributeStats类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Java中weka.core.AttributeStats的典型用法代码示例。如果您正苦于以下问题:Java AttributeStats类的具体用法?Java AttributeStats怎么用?Java AttributeStats使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



AttributeStats类属于weka.core包,在下文中一共展示了AttributeStats类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Java代码示例。

示例1: calculate

import weka.core.AttributeStats; //导入依赖的package包/类
/**
 * Calculate metric value
 * 
 * @param mlData Multi-label dataset to which calculate the metric
 * @return Value of the metric
 */
public double calculate(MultiLabelInstances mlData){
	double mean = 0.0;
       
	Instances instances = mlData.getDataSet();
       
       int countNominal = 0;
       int [] featureIndices = mlData.getFeatureIndices();
       
       for(int fIndex : featureIndices){
           AttributeStats attStats = instances.attributeStats(fIndex);
           if(attStats.nominalCounts != null){
               countNominal++;
               mean += Utils.entropy(attStats.nominalCounts);
           }
       }
       
       mean = mean/countNominal;
	
	this.value = mean;
	return value;
}
 
开发者ID:i02momuj,项目名称:MLDA,代码行数:28,代码来源:MeanEntropiesNominalAttributes.java


示例2: setT2T1BasedOnStdDev

import weka.core.AttributeStats; //导入依赖的package包/类
/**
 * Pretty hokey heuristic to try and set t2 distance automatically based on
 * standard deviation
 * 
 * @param trainingBatch the training instances
 * @throws Exception if a problem occurs
 */
protected void setT2T1BasedOnStdDev(Instances trainingBatch) throws Exception {
  double normalizedStdDevSum = 0;

  for (int i = 0; i < trainingBatch.numAttributes(); i++) {
    if (trainingBatch.attribute(i).isNominal()) {
      normalizedStdDevSum += 0.25;
    } else if (trainingBatch.attribute(i).isNumeric()) {
      AttributeStats stats = trainingBatch.attributeStats(i);
      if (trainingBatch.numInstances() - stats.missingCount > 2) {
        double stdDev = stats.numericStats.stdDev;
        double min = stats.numericStats.min;
        double max = stats.numericStats.max;
        if (!Utils.isMissingValue(stdDev) && max - min > 0) {
          stdDev = 0.5 * stdDev / (max - min);
          normalizedStdDevSum += stdDev;
        }
      }
    }
  }

  normalizedStdDevSum = Math.sqrt(normalizedStdDevSum);
  if (normalizedStdDevSum > 0) {
    m_t2 = normalizedStdDevSum;
  }
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:33,代码来源:Canopy.java


示例3: setInstances

import weka.core.AttributeStats; //导入依赖的package包/类
/**
 * Tells the panel to use a new set of instances.
 * 
 * @param inst a set of Instances
 */
public void setInstances(Instances inst) {

  m_Instances = inst;
  m_AttributeStats = new AttributeStats[inst.numAttributes()];
  m_AttributeNameLab.setText(NO_SOURCE);
  m_AttributeTypeLab.setText(NO_SOURCE);
  m_MissingLab.setText(NO_SOURCE);
  m_UniqueLab.setText(NO_SOURCE);
  m_DistinctLab.setText(NO_SOURCE);
  m_StatsTable.setModel(new DefaultTableModel());

  m_allEqualWeights = true;
  if (m_Instances.numInstances() == 0) {
    return;
  }
  double w = m_Instances.instance(0).weight();
  for (int i = 1; i < m_Instances.numInstances(); i++) {
    if (m_Instances.instance(i).weight() != w) {
      m_allEqualWeights = false;
      break;
    }
  }
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:29,代码来源:AttributeSummaryPanel.java


示例4: testTypical

import weka.core.AttributeStats; //导入依赖的package包/类
public void testTypical() {
  Instances result = useFilter();
  // Number of attributes shouldn't change
  assertEquals(m_Instances.numAttributes(), result.numAttributes());
  // Number of instances may change (if an instance has all missing values)
  // assertEquals(m_Instances.numInstances(), result.numInstances());
  for (int j = 0; j < result.numAttributes(); j++) {
    if (j == m_Instances.classIndex() && m_Instances.attribute(j).isNumeric() == false) {
      continue;
    }
    AttributeStats currentStats = m_Instances.attributeStats(j);
    if (currentStats.distinctCount < 2) {
      continue;
    }
    assertTrue("All missing values except for those in nonnumeric class " +
                "attributes should be replaced.", 
                result.attributeStats(j).missingCount == 0);
  }
}
 
开发者ID:dsibournemouth,项目名称:autoweka,代码行数:20,代码来源:EMImputationTest.java


示例5: setInstances

import weka.core.AttributeStats; //导入依赖的package包/类
/**
 * Tells the panel to use a new set of instances.
 *
 * @param inst a set of Instances
 */
public void setInstances(Instances inst) {
  
  m_Instances = inst;
  m_AttributeStats = new AttributeStats [inst.numAttributes()];
  m_AttributeNameLab.setText(NO_SOURCE);
  m_AttributeTypeLab.setText(NO_SOURCE);
  m_MissingLab.setText(NO_SOURCE);
  m_UniqueLab.setText(NO_SOURCE);
  m_DistinctLab.setText(NO_SOURCE);
  m_StatsTable.setModel(new DefaultTableModel());
  
  m_allEqualWeights = true;
  double w = m_Instances.instance(0).weight();
  for (int i = 1; i < m_Instances.numInstances(); i++) {
    if (m_Instances.instance(i).weight() != w) {
      m_allEqualWeights = false;
      break;
    }
  }
}
 
开发者ID:dsibournemouth,项目名称:autoweka,代码行数:26,代码来源:AttributeSummaryPanel.java


示例6: testDistributionSpread_X

import weka.core.AttributeStats; //导入依赖的package包/类
private void testDistributionSpread_X(double factor) throws Exception {
  AttributeStats origs = m_Instances.attributeStats(1);
  assertNotNull(origs.nominalCounts);
  
  ((SpreadSubsample)m_Filter).setDistributionSpread(factor);
  Instances result = useFilter();
  assertEquals(m_Instances.numAttributes(), result.numAttributes());
  AttributeStats outs = result.attributeStats(1);

  // Check distributions are pretty similar
  assertNotNull(outs.nominalCounts);
  assertEquals(origs.nominalCounts.length, outs.nominalCounts.length);
  int min = outs.nominalCounts[0];
  int max = outs.nominalCounts[0];
  for (int i = 1; i < outs.nominalCounts.length; i++) {
    if (outs.nominalCounts[i] < min) {
      min = outs.nominalCounts[i];
    }
    if (outs.nominalCounts[i] > max) {
      max = outs.nominalCounts[i];
    }
  }
  assertTrue(max / factor <= min);
}
 
开发者ID:dsibournemouth,项目名称:autoweka,代码行数:25,代码来源:SpreadSubsampleTest.java


示例7: testNoBias

import weka.core.AttributeStats; //导入依赖的package包/类
public void testNoBias() throws Exception {
  m_Instances.setClassIndex(1);
  AttributeStats origs = m_Instances.attributeStats(1);
  assertNotNull(origs.nominalCounts);

  Instances result = useFilter();
  assertEquals(m_Instances.numAttributes(), result.numAttributes());
  AttributeStats outs = result.attributeStats(1);

  // Check distributions are pretty similar
  assertNotNull(outs.nominalCounts);
  assertEquals(origs.nominalCounts.length, outs.nominalCounts.length);
  for (int i = 0; i < origs.nominalCounts.length; i++) {
    int est = origs.nominalCounts[i] / 2 - 1;
    assertTrue("Counts for value:" + i 
           + " orig:" + origs.nominalCounts[i] 
           + " out50%:" + outs.nominalCounts[i], 
           (est <= outs.nominalCounts[i]) &&
           (outs.nominalCounts[i] <= (est + 3)));
  }
}
 
开发者ID:dsibournemouth,项目名称:autoweka,代码行数:22,代码来源:ResampleTest.java


示例8: testBiasToUniform

import weka.core.AttributeStats; //导入依赖的package包/类
public void testBiasToUniform() throws Exception {
  m_Instances.setClassIndex(1);
  AttributeStats origs = m_Instances.attributeStats(1);
  assertNotNull(origs.nominalCounts);
  
  ((Resample)m_Filter).setBiasToUniformClass(1.0);
  Instances result = useFilter();
  assertEquals(m_Instances.numAttributes(), result.numAttributes());
  AttributeStats outs = result.attributeStats(1);

  // Check distributions are pretty similar
  assertNotNull(outs.nominalCounts);
  assertEquals(origs.nominalCounts.length, outs.nominalCounts.length);
  int est = (origs.totalCount - origs.missingCount) / origs.distinctCount;
  est = est / 2 - 1;
  for (int i = 0; i < origs.nominalCounts.length; i++) {
    assertTrue("Counts for value:" + i 
           + " orig:" + origs.nominalCounts[i] 
           + " out50%:" + outs.nominalCounts[i]
           + " ~wanted:" + est,
           (est <= outs.nominalCounts[i]) &&
           (outs.nominalCounts[i] <= (est + 3)));
  }
}
 
开发者ID:dsibournemouth,项目名称:autoweka,代码行数:25,代码来源:ResampleTest.java


示例9: calculate

import weka.core.AttributeStats; //导入依赖的package包/类
/**
 * Calculate metric value
 * 
 * @param mlData Multi-label dataset to which calculate the metric
 * @return Value of the metric
 */
public double calculate(MultiLabelInstances mlData){
       Instances instances = mlData.getDataSet();
       
       int nLabels = mlData.getNumLabels();
       int [] labels = mlData.getLabelIndices();
       
       double [] entropies = new double[nLabels];
       
       for(int i=0; i<nLabels; i++){
           AttributeStats attStats = instances.attributeStats(labels[i]);
           
           if(attStats.nominalCounts != null){
               entropies[i] = Utils.entropy(attStats.nominalCounts);
           }
       }
       
       double minEntropy = Double.MAX_VALUE;
       for(double e : entropies){
           if(e < minEntropy){
               minEntropy = e;
           }
       }
       
       this.value = minEntropy;
       
       return value;
}
 
开发者ID:i02momuj,项目名称:MLDA,代码行数:34,代码来源:MinEntropy.java


示例10: calculate

import weka.core.AttributeStats; //导入依赖的package包/类
/**
 * Calculate metric value
 * 
 * @param mlData Multi-label dataset to which calculate the metric
 * @return Value of the metric
 */
public double calculate(MultiLabelInstances mlData){        
	Instances instances = mlData.getDataSet();
       
	int nLabels = mlData.getNumLabels();
       int [] labels = mlData.getLabelIndices();
       
       double [] entropies = new double[nLabels];
       
       for(int i=0; i<nLabels; i++){
           AttributeStats attStats = instances.attributeStats(labels[i]);
           
           if(attStats.nominalCounts != null){
               entropies[i] = Utils.entropy(attStats.nominalCounts);
           }
       }
       
       double maxEntropy = Double.MIN_VALUE;
       for(double e : entropies){
           if(e > maxEntropy){
               maxEntropy = e;
           }
       }
       
       this.value = maxEntropy;
       
       return value;
}
 
开发者ID:i02momuj,项目名称:MLDA,代码行数:34,代码来源:MaxEntropy.java


示例11: calculate

import weka.core.AttributeStats; //导入依赖的package包/类
/**
 * Calculate metric value
 * 
 * @param mlData Multi-label dataset to which calculate the metric
 * @return Value of the metric
 */
public double calculate(MultiLabelInstances mlData){        
	Instances instances = mlData.getDataSet();
       
	int nLabels = mlData.getNumLabels();
       int [] labels = mlData.getLabelIndices();
       
       double [] entropies = new double[nLabels];
       
       for(int i=0; i<nLabels; i++){
           AttributeStats attStats = instances.attributeStats(labels[i]);
           
           if(attStats.nominalCounts != null){
               entropies[i] = Utils.entropy(attStats.nominalCounts);
           }
       }

       double meanEntropy = 0;
       for(double e : entropies){
           meanEntropy += e;
       }
       meanEntropy /= entropies.length;
       
       this.value = meanEntropy;
       
       return value;
}
 
开发者ID:i02momuj,项目名称:MLDA,代码行数:33,代码来源:MeanEntropy.java


示例12: main

import weka.core.AttributeStats; //导入依赖的package包/类
public static void main(String[] args) {
  try {
    weka.core.Instances inst =
      new weka.core.Instances(new java.io.FileReader(args[0]));

    double quantile = Double.parseDouble(args[1]);
    IncrementalQuantileEstimator ps =
      new IncrementalQuantileEstimator(quantile);

    int attIndex = Integer.parseInt(args[2]) - 1;

    for (int i = 0; i < inst.numInstances(); i++) {
      if (!inst.instance(i).isMissing(attIndex)) {
        ps.add(inst.instance(i).value(attIndex));
      }
    }

    System.err.println("Estimated quantile (" + quantile + ") "
      + ps.getQuantile());

    inst.sort(attIndex);
    double actualQuant = 0;
    AttributeStats as = inst.attributeStats(attIndex);
    double pIndex = quantile * (inst.numInstances() - as.missingCount);
    double mean = as.numericStats.mean;
    if (pIndex - (int) pIndex > 0) {
      pIndex = (int) pIndex;
      actualQuant = inst.instance((int) pIndex).value(attIndex);
    } else {
      double f = inst.instance((int) pIndex - 1).value(attIndex);
      double s = inst.instance((int) pIndex).value(attIndex);
      actualQuant = (f + s) / 2.0;
    }

    System.err.println("Actual quantile (" + quantile + ") " + actualQuant);
    System.err.println("Mean: " + mean);
  } catch (Exception ex) {
    ex.printStackTrace();
  }
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:41,代码来源:IncrementalQuantileEstimator.java


示例13: updateStats

import weka.core.AttributeStats; //导入依赖的package包/类
/**
 * Update attribute stats using the supplied instance.
 * 
 * @param updateInstance the instance for updating
 * @param delete true if the values of the supplied instance are to be
 *          removed from the statistics
 */
protected void updateStats(Instance updateInstance, boolean delete) {

  if (m_attStats == null) {
    m_attStats = new AttributeStats[m_numAttributes];
    for (int i = 0; i < m_numAttributes; i++) {
      m_attStats[i] = new AttributeStats();
      if (m_clusterInstances.attribute(i).isNominal()) {
        m_attStats[i].nominalCounts = new int[m_clusterInstances.attribute(
          i).numValues()];
      } else {
        m_attStats[i].numericStats = new Stats();
      }
    }
  }
  for (int i = 0; i < m_numAttributes; i++) {
    if (!updateInstance.isMissing(i)) {
      double value = updateInstance.value(i);
      if (m_clusterInstances.attribute(i).isNominal()) {
        m_attStats[i].nominalCounts[(int) value] += (delete) ? (-1.0 * updateInstance
          .weight()) : updateInstance.weight();
        m_attStats[i].totalCount += (delete) ? (-1.0 * updateInstance
          .weight()) : updateInstance.weight();
      } else {
        if (delete) {
          m_attStats[i].numericStats.subtract(value,
            updateInstance.weight());
        } else {
          m_attStats[i].numericStats.add(value, updateInstance.weight());
        }
      }
    }
  }
  m_totalInstances += (delete) ? (-1.0 * updateInstance.weight())
    : (updateInstance.weight());
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:43,代码来源:Cobweb.java


示例14: setInstances

import weka.core.AttributeStats; //导入依赖的package包/类
/**
 * Sets the instances for use
 * 
 * @param newins a set of Instances
 */
public void setInstances(Instances newins) {

  m_attribIndex = 0;
  m_as = null;
  m_data = new Instances(newins);
  if (m_colorAttrib != null) {
    m_colorAttrib.removeAllItems();
    m_colorAttrib.addItem("No class");
    for (int i = 0; i < m_data.numAttributes(); i++) {
      String type = "(" + Attribute.typeToStringShort(m_data.attribute(i))
        + ")";
      m_colorAttrib.addItem(new String("Class: " + m_data.attribute(i).name()
        + " " + type));
    }
    if (m_data.classIndex() >= 0) {
      m_colorAttrib.setSelectedIndex(m_data.classIndex() + 1);
    } else {
      m_colorAttrib.setSelectedIndex(m_data.numAttributes());
    }
    // if (m_data.classIndex() >= 0) {
    // m_colorAttrib.setSelectedIndex(m_data.classIndex());
    // }
  }
  if (m_data.classIndex() >= 0) {
    m_classIndex = m_data.classIndex();
  } else {
    m_classIndex = m_data.numAttributes() - 1;
  }

  m_asCache = new AttributeStats[m_data.numAttributes()];
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:37,代码来源:AttributeVisualizationPanel.java


示例15: setDerived

import weka.core.AttributeStats; //导入依赖的package包/类
/**
 * Sets the gui elements for fields that are stored in the AttributeStats
 * structure.
 * 
 * @param index the index of the attribute
 */
protected void setDerived(int index) {

  AttributeStats as = m_AttributeStats[index];
  long percent = Math.round(100.0 * as.missingCount / as.totalCount);
  m_MissingLab.setText("" + as.missingCount + " (" + percent + "%)");
  percent = Math.round(100.0 * as.uniqueCount / as.totalCount);
  m_UniqueLab.setText("" + as.uniqueCount + " (" + percent + "%)");
  m_DistinctLab.setText("" + as.distinctCount);
  setTable(as, index);
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:17,代码来源:AttributeSummaryPanel.java


示例16: build

import weka.core.AttributeStats; //导入依赖的package包/类
/**
 * builds the classifier
 * 
 * @throws Exception	if something goes wrong
 */
@Override
protected void build() throws Exception {
  AttributeStats        stats;
  int                   i;
  
  // determine class distribution
  m_ClassDistribution = new double[2];
  stats = m_Trainset.attributeStats(m_Trainset.classIndex());
  for (i = 0; i < 2; i++)
    m_ClassDistribution[i] = stats.nominalCounts[i] / stats.totalCount;

  // the number of instances added to the training set in each iteration
  m_InstancesPerIteration =   (double) m_Testset.numInstances() 
                            / getFolds();
  if (getDebug())
    System.out.println("InstancesPerIteration: " + m_InstancesPerIteration);

  // build classifier
  m_Random = new Random(getSeed());
  for (i = 0; i <= getFolds(); i++) {
    if (getVerbose() || getDebug()) {
      if (getCutOff() > 0)
        System.out.println(   "\nFold " + i + "/" + getFolds() 
                            + " (CutOff at " + getCutOff() + ")");
      else
        System.out.println("\nFold " + i + "/" + getFolds());
    }
    buildTrainSet(i);
    buildClassifier();
    
    // cutoff of folds reached?
    if ( (i > 0) && (i == getCutOff()) )
      break;
  }
}
 
开发者ID:fracpete,项目名称:collective-classification-weka-package,代码行数:41,代码来源:Chopper.java


示例17: setClassProbabilities

import weka.core.AttributeStats; //导入依赖的package包/类
/**
 * sets the class probabilities based on the given data
 * 
 * @param data	the data to get the class probabilities from
 */
public void setClassProbabilities(Instances data) {
  AttributeStats	stats;
  int			total;
  int			i;
  
  stats = data.attributeStats(data.classIndex());
  total = Utils.sum(stats.nominalCounts);
  m_ClassProbs = new double[data.classAttribute().numValues()];
  for (i = 0; i < m_ClassProbs.length; i++)
    m_ClassProbs[i] = (double) stats.nominalCounts[i] / (double) total;
}
 
开发者ID:fracpete,项目名称:collective-classification-weka-package,代码行数:17,代码来源:DecisionTreeNode.java


示例18: initializeLabels

import weka.core.AttributeStats; //导入依赖的package包/类
/**
 * randomly initializes the class labels in the given set according to the
 * class distribution in the training set
 * @param train       the training instances to retrieve the class
 *                    distribution from
 * @param instances   the instances to initialize
 * @param from        the first instance to initialize
 * @param count       the number of instances to initialize
 * @return            the initialize instances
 * @throws Exception  if something goes wrong
 */
public Instances initializeLabels( Instances train, Instances instances, 
                                   int from, int count )
  throws Exception {
    
  int             i;
  AttributeStats  stats;
  Attribute       classAttr;
  double          percentage;
  
  // reset flip count
  m_FlippedLabels = 0;
  
  // explicitly set labels to "missing"
  for (i = from; i < from + count; i++)
    instances.instance(i).setClassMissing();
  
  // determining the percentage of the first class
  stats      = train.attributeStats(train.classIndex());
  percentage = (double) stats.nominalCounts[0] / (double) stats.totalCount;
  
  // set lables
  classAttr = instances.attribute(instances.classIndex());
  for (i = from; i < from + count; i++) {
    // random class
    if (m_Random.nextDouble() < percentage)
      instances.instance(i).setClassValue(classAttr.value(0));
    else
      instances.instance(i).setClassValue(classAttr.value(1));
  }

  return instances;
}
 
开发者ID:fracpete,项目名称:collective-classification-weka-package,代码行数:44,代码来源:CollectiveInstances.java


示例19: updateStats

import weka.core.AttributeStats; //导入依赖的package包/类
/**
    * Update attribute stats using the supplied instance. 
    *
    * @param updateInstance the instance for updating
    * @param delete true if the values of the supplied instance are
    * to be removed from the statistics
    */
   protected void updateStats(Instance updateInstance, 
		       boolean delete) {

     if (m_attStats == null) {
m_attStats = new AttributeStats[m_numAttributes];
for (int i = 0; i < m_numAttributes; i++) {
  m_attStats[i] = new AttributeStats();
  if (m_clusterInstances.attribute(i).isNominal()) {
    m_attStats[i].nominalCounts = 
      new int [m_clusterInstances.attribute(i).numValues()];
  } else {
    m_attStats[i].numericStats = new Stats();
  }
}
     }
     for (int i = 0; i < m_numAttributes; i++) {
if (!updateInstance.isMissing(i)) {
  double value = updateInstance.value(i);
  if (m_clusterInstances.attribute(i).isNominal()) {
    m_attStats[i].nominalCounts[(int)value] += (delete) ? 
      (-1.0 * updateInstance.weight()) : 
      updateInstance.weight();
    m_attStats[i].totalCount += (delete) ?
      (-1.0 * updateInstance.weight()) :
      updateInstance.weight();
  } else {
    if (delete) {
      m_attStats[i].numericStats.subtract(value, 
					  updateInstance.weight());
    } else {
      m_attStats[i].numericStats.add(value, updateInstance.weight());
    }
  }
}
     }
     m_totalInstances += (delete) 
? (-1.0 * updateInstance.weight()) 
: (updateInstance.weight());
   }
 
开发者ID:dsibournemouth,项目名称:autoweka,代码行数:47,代码来源:Cobweb.java


示例20: setInstances

import weka.core.AttributeStats; //导入依赖的package包/类
/**
  * Sets the instances for use
  *
  * @param newins a set of Instances
  */
 public void setInstances(Instances newins) {
   
   m_attribIndex = 0;
   m_as = null;
   m_data = new Instances(newins);
   if(m_colorAttrib!=null) {
     m_colorAttrib.removeAllItems();
     m_colorAttrib.addItem("No class");
     for(int i=0; i<m_data.numAttributes(); i++) {
String type = "(" + Attribute.typeToStringShort(m_data.attribute(i)) + ")";
       m_colorAttrib.addItem(new String("Class: " + m_data.attribute(i).name() + " " + type));
     }
     if (m_data.classIndex() >= 0) {
       m_colorAttrib.setSelectedIndex(m_data.classIndex() + 1);
     } else {
       m_colorAttrib.setSelectedIndex(m_data.numAttributes());
     }
     //if (m_data.classIndex() >= 0) {
     //    m_colorAttrib.setSelectedIndex(m_data.classIndex());
     //}
   }
   if (m_data.classIndex() >= 0) {
     m_classIndex = m_data.classIndex();
   } else {
     m_classIndex = m_data.numAttributes()-1;
   }
   
   m_asCache = new AttributeStats[m_data.numAttributes()];
 }
 
开发者ID:dsibournemouth,项目名称:autoweka,代码行数:35,代码来源:AttributeVisualizationPanel.java



注:本文中的weka.core.AttributeStats类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Java DumbEscapeHandler类代码示例发布时间:2022-05-23
下一篇:
Java PrepareOnlyThisForTest类代码示例发布时间:2022-05-23
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap