• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Java AttributeSelection类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Java中weka.filters.supervised.attribute.AttributeSelection的典型用法代码示例。如果您正苦于以下问题:Java AttributeSelection类的具体用法?Java AttributeSelection怎么用?Java AttributeSelection使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



AttributeSelection类属于weka.filters.supervised.attribute包,在下文中一共展示了AttributeSelection类的17个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Java代码示例。

示例1: InfoGainAttributeEval

import weka.filters.supervised.attribute.AttributeSelection; //导入依赖的package包/类
public static AttributeSelection InfoGainAttributeEval(Instances data) throws Exception{
    AttributeSelection filter = new AttributeSelection();
    InfoGainAttributeEval evaluator = new InfoGainAttributeEval();
    filter.setEvaluator(evaluator);
    Ranker search = new Ranker();
    search.setThreshold(0);
    filter.setSearch(search);
    filter.setInputFormat(data);
    
    return filter;
}
 
开发者ID:amineabdaoui,项目名称:french-sentiment-classification,代码行数:12,代码来源:SelectionAttributs.java


示例2: createFilter

import weka.filters.supervised.attribute.AttributeSelection; //导入依赖的package包/类
public static AttributeSelection createFilter(int numAtts) {
  
AttributeSelection filter = new AttributeSelection();
try {
	 
	Ranker search = new Ranker();
	//search.setSearchBackwards(true); 
	search.setNumToSelect(numAtts);
	
	GainRatioAttributeEval eval = new GainRatioAttributeEval();
	//InfoGainAttributeEval eval = new InfoGainAttributeEval();
	//ReliefFAttributeEval eval = new ReliefFAttributeEval();
	filter.setEvaluator(eval);
	filter.setSearch(search);
	//filter.setInputFormat(data);
			
} catch (Exception e) {
	e.printStackTrace();
}
  
  return filter;
 }
 
开发者ID:socialsensor,项目名称:computational-verification,代码行数:23,代码来源:AttributeSelectionHandler.java


示例3: GainRatioAttributeEval

import weka.filters.supervised.attribute.AttributeSelection; //导入依赖的package包/类
public static AttributeSelection GainRatioAttributeEval(Instances data, int n) throws Exception{
    AttributeSelection filter = new AttributeSelection();
    GainRatioAttributeEval evaluator = new GainRatioAttributeEval();
    filter.setEvaluator(evaluator);
    Ranker search = new Ranker();
    search.setNumToSelect(n);
    filter.setSearch(search);
    filter.setInputFormat(data);
    
    return filter;
}
 
开发者ID:amineabdaoui,项目名称:french-sentiment-classification,代码行数:12,代码来源:SelectionAttributs.java


示例4: buildAttributeFilterFor

import weka.filters.supervised.attribute.AttributeSelection; //导入依赖的package包/类
private static Filter buildAttributeFilterFor(AttributeFilter attributeFilter, Instances dataSet) throws Exception
{
    ASEvaluation evaluator = attributeFilter.getEvalClazz().newInstance();
    ((OptionHandler) evaluator).setOptions(Utils.splitOptions(attributeFilter.getEvalConfig()));

    ASSearch search = attributeFilter.getSearchClazz().newInstance();
    ((OptionHandler) search).setOptions(Utils.splitOptions(attributeFilter.getSearchConfig()));

    Filter filter = new AttributeSelection();
    filter.setInputFormat(dataSet);
    ((AttributeSelection) filter).setEvaluator(evaluator);
    ((AttributeSelection) filter).setSearch(search);

    return filter;
}
 
开发者ID:marcelovca90,项目名称:anti-spam-weka-gui,代码行数:16,代码来源:FilterConfiguration.java


示例5: configureCostSensitiveClassifier

import weka.filters.supervised.attribute.AttributeSelection; //导入依赖的package包/类
/**
 * Sets a default CostSensitiveClassifier with SMO. The settings of this method must be modified if used for another project.
 * @param data weka data containing instances and attributes
 * @param costSensitiveClassifier unconfigured Cost Sensitive Classifier
 * @param costMatrix Cost Matrix
 * @return CostSensitiveClassifier fully configured Cost Sensitive Classifier
 * @throws Exception 
 */
protected static CostSensitiveClassifier configureCostSensitiveClassifier(CostSensitiveClassifier costSensitiveClassifier,
		Instances data, String costMatrix) throws Exception {

	String[] CscOptions = {"-cost-matrix", costMatrix, "-S", "1"};
	String[] rankerOptions = {"-P",Integer.toString(data.numAttributes() - 1),"-T","-1.7976931348623157E308","-N","-1"};
	String[] smoOptions = {"-C", "1.0", "-L", "0.0010", "-P", "1.0E-12", "-N", "0", "-V", "-1", "-W", "1", "-K",
            PolyKernel.class.getName()+" -C 250007 -E 2.0"};
	
	InfoGainAttributeEval igAttEval = new InfoGainAttributeEval();
	Ranker ranker = new Ranker();
	ranker.setOptions(rankerOptions);
	
	AttributeSelection attSelect = new AttributeSelection(); 
	attSelect.setEvaluator(igAttEval);
	attSelect.setSearch(ranker);
	
	SMO smo = new SMO();
	smo.setOptions(smoOptions);
	
	FilteredClassifier filteredClsfr = new FilteredClassifier();
	filteredClsfr.setClassifier(smo);
	filteredClsfr.setFilter(attSelect);
	
	costSensitiveClassifier.setOptions(CscOptions); 
	costSensitiveClassifier.setClassifier(filteredClsfr);
	
	costSensitiveClassifier.buildClassifier(data);
	System.out.println("CostSensitiveClassifier built.");
	return costSensitiveClassifier;
}
 
开发者ID:UKPLab,项目名称:jlcl2015-pythagoras,代码行数:39,代码来源:ListMisclassifiedInstances.java


示例6: InformationGain

import weka.filters.supervised.attribute.AttributeSelection; //导入依赖的package包/类
public InformationGain(Instances dataset) throws Exception{
	data = dataset;
	infoG = new InfoGainAttributeEval();
	infoG.buildEvaluator(data);
	filter = new AttributeSelection();
	search = new Ranker();
	search.setThreshold(0.0);
}
 
开发者ID:a-n-d-r-e-i,项目名称:seagull,代码行数:9,代码来源:InformationGain.java


示例7: useFilter

import weka.filters.supervised.attribute.AttributeSelection; //导入依赖的package包/类
/**
  * uses the filter
  */
 public Instances useFilter(Instances data, AttributeSelection filter) throws Exception {
  
   System.out.println("\n2. Filter");
   System.out.println(data.get(0));
   Instances newData = Filter.useFilter(data, filter);
   for (int i=0;i<newData.numAttributes();i++){
   	System.out.print(newData.attribute(i).name()+" ");
   }
   
   // write training set to file
/*BufferedWriter bw = null;
String filePath = "training_newdata.txt";
for (int i = 0; i < newData.size(); i++) {
	try {

		bw = new BufferedWriter(new FileWriter(filePath, true));
		// if file doesn't exist, then create it
		bw.append(newData.get(i).toString());
		bw.newLine();
		bw.flush();
		bw.close();

	} catch (IOException e) {
		e.printStackTrace();
	}
}*/
//System.out.println(newData);
   return newData;
 }
 
开发者ID:socialsensor,项目名称:computational-verification,代码行数:33,代码来源:AttributeSelectionHandler.java


示例8: createFilter2

import weka.filters.supervised.attribute.AttributeSelection; //导入依赖的package包/类
public static AttributeSelection createFilter2(Instances data) throws Exception {

 weka.filters.supervised.attribute.AttributeSelection filter = new weka.filters.supervised.attribute.AttributeSelection();
 CfsSubsetEval eval = new CfsSubsetEval();
 GreedyStepwise search = new GreedyStepwise();
 search.setSearchBackwards(true);
 search.setGenerateRanking(true);
 search.setNumToSelect(15);
 //System.out.println("threshold "+search.getThreshold());
 filter.setEvaluator(eval);
 filter.setSearch(search);
 //filter.setInputFormat(data);
 
 return filter;
}
 
开发者ID:socialsensor,项目名称:computational-verification,代码行数:16,代码来源:AttributeSelectionHandler.java


示例9: useLowLevel

import weka.filters.supervised.attribute.AttributeSelection; //导入依赖的package包/类
/**
 * uses the low level approach
 */
public void useLowLevel(Instances data) throws Exception {
 
 System.out.println("\n3. Low-level");
   weka.attributeSelection.AttributeSelection attsel = new  weka.attributeSelection.AttributeSelection ();
   CfsSubsetEval eval = new CfsSubsetEval();
   GreedyStepwise search = new GreedyStepwise();
   search.setSearchBackwards(true);
   attsel.setEvaluator(eval);
   attsel.setSearch(search);
   attsel.SelectAttributes(data);
   int[] indices = attsel.selectedAttributes();
   System.out.println("selected attribute indices (starting with 0):\n" + Utils.arrayToString(indices));
  
}
 
开发者ID:socialsensor,项目名称:computational-verification,代码行数:18,代码来源:AttributeSelectionHandler.java


示例10: WekaAttributeSelection

import weka.filters.supervised.attribute.AttributeSelection; //导入依赖的package包/类
public WekaAttributeSelection(ASEvaluation evaluator,
		ASSearch searcher) {
	this.attrsel = new AttributeSelection();
	this.evaluator = evaluator;
	this.Searcher = searcher;
	this.attreval = (AttributeEvaluator) evaluator;
}
 
开发者ID:eracle,项目名称:gap,代码行数:8,代码来源:WekaAttributeSelection.java


示例11: getEvalResultbyChiSquare

import weka.filters.supervised.attribute.AttributeSelection; //导入依赖的package包/类
/***
	 * <p>To get 10-fold cross validation in one single arff in <b>path</b></p>
	 * <p>Use C4.5 and <b>SMOTE</b>, combined with <b>Chi-Square</b> to classify the dataset.</p>
	 * @param path dataset path
	 * @throws Exception
	 */
	public static void getEvalResultbyChiSquare(String path, int index) throws Exception{
		
		Instances ins = DataSource.read(path);
		int numAttr = ins.numAttributes();
		ins.setClassIndex(numAttr - 1);
		
		/**chi-squared filter to process the whole dataset first*/
		ChiSquaredAttributeEval evall = new ChiSquaredAttributeEval();	
		Ranker ranker = new Ranker();
		AttributeSelection selector = new AttributeSelection();
		
		selector.setEvaluator(evall);
		selector.setSearch(ranker);
		selector.setInputFormat(ins);
		ins = Filter.useFilter(ins, selector);
		
		SMOTE smote = new SMOTE();
		smote.setInputFormat(ins);
		
		/** classifiers setting*/
		J48 j48 = new J48();
//		j48.setConfidenceFactor(0.4f);
		j48.buildClassifier(ins);

		FilteredClassifier fc = new FilteredClassifier();
		fc.setClassifier(j48);
		fc.setFilter(smote);
			
		Evaluation eval = new Evaluation(ins);	
		eval.crossValidateModel(fc, ins, 10, new Random(1));
		
//		System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(0), eval.recall(0), eval.fMeasure(0));
//		System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(1), eval.recall(1), eval.fMeasure(1));
//		System.out.printf(" %4.3f \n\n", (1-eval.errorRate()));
		results[index][0] = eval.precision(0);
		results[index][1] = eval.recall(0);
		results[index][2] = eval.fMeasure(0);
		results[index][3] = eval.precision(1);
		results[index][4] = eval.recall(1);
		results[index][5] = eval.fMeasure(1);
		results[index][6] = 1-eval.errorRate();
				
	}
 
开发者ID:Gu-Youngfeng,项目名称:CraTer,代码行数:50,代码来源:FeatureSelectionAve.java


示例12: getEvalResultbyInfoGain

import weka.filters.supervised.attribute.AttributeSelection; //导入依赖的package包/类
/***
	 * <p>To get 10-fold cross validation in one single arff in <b>path</b></p>
	 * <p>Use C4.5 and <b>SMOTE</b>, combined with <b>Information Gain</b> to classify the dataset.</p>
	 * @param path dataset path
	 * @throws Exception
	 */
	public static void getEvalResultbyInfoGain(String path, int index) throws Exception{
		
		Instances ins = DataSource.read(path);
		int numAttr = ins.numAttributes();
		ins.setClassIndex(numAttr - 1);
		
		/**information gain filter to process the whole dataset first*/
		InfoGainAttributeEval evall = new InfoGainAttributeEval();
		Ranker ranker = new Ranker();
		AttributeSelection selector = new AttributeSelection();
		
		selector.setEvaluator(evall);
		selector.setSearch(ranker);
		selector.setInputFormat(ins);
		ins = Filter.useFilter(ins, selector);
		
		SMOTE smote = new SMOTE();
		smote.setInputFormat(ins);
		
		/** classifiers setting*/
		J48 j48 = new J48();
//		j48.setConfidenceFactor(0.4f);
		j48.buildClassifier(ins);

		FilteredClassifier fc = new FilteredClassifier();
		fc.setClassifier(j48);
		fc.setFilter(smote);
			
		Evaluation eval = new Evaluation(ins);	
		eval.crossValidateModel(fc, ins, 10, new Random(1));
		
//		System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(0), eval.recall(0), eval.fMeasure(0));
//		System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(1), eval.recall(1), eval.fMeasure(1));
//		System.out.printf(" %4.3f \n\n", (1-eval.errorRate()));
		results[index][0] = eval.precision(0);
		results[index][1] = eval.recall(0);
		results[index][2] = eval.fMeasure(0);
		results[index][3] = eval.precision(1);
		results[index][4] = eval.recall(1);
		results[index][5] = eval.fMeasure(1);
		results[index][6] = 1-eval.errorRate();
				
	}
 
开发者ID:Gu-Youngfeng,项目名称:CraTer,代码行数:50,代码来源:FeatureSelectionAve.java


示例13: getEvalResultbyGainRatio

import weka.filters.supervised.attribute.AttributeSelection; //导入依赖的package包/类
/***
	 * <p>To get 10-fold cross validation in one single arff in <b>path</b></p>
	 * <p>Use C4.5 and <b>SMOTE</b>, combined with <b>Information Gain Ratio</b> to classify the dataset.</p>
	 * @param path dataset path
	 * @throws Exception
	 */
	public static void getEvalResultbyGainRatio(String path, int index) throws Exception{
		
		Instances ins = DataSource.read(path);
		int numAttr = ins.numAttributes();
		ins.setClassIndex(numAttr - 1);
		
		/**information gain ratio filter to process the whole dataset first*/
		GainRatioAttributeEval evall = new GainRatioAttributeEval();
		Ranker ranker = new Ranker();
		AttributeSelection selector = new AttributeSelection();
		
		selector.setEvaluator(evall);
		selector.setSearch(ranker);
		selector.setInputFormat(ins);
		ins = Filter.useFilter(ins, selector);
		
		SMOTE smote = new SMOTE();
		smote.setInputFormat(ins);
		
		/** classifiers setting*/
		J48 j48 = new J48();
//		j48.setConfidenceFactor(0.4f);
		j48.buildClassifier(ins);

		FilteredClassifier fc = new FilteredClassifier();
		fc.setClassifier(j48);
		fc.setFilter(smote);
			
		Evaluation eval = new Evaluation(ins);	
		eval.crossValidateModel(fc, ins, 10, new Random(1));
		
//		System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(0), eval.recall(0), eval.fMeasure(0));
//		System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(1), eval.recall(1), eval.fMeasure(1));
//		System.out.printf(" %4.3f \n\n", (1-eval.errorRate()));
		results[index][0] = eval.precision(0);
		results[index][1] = eval.recall(0);
		results[index][2] = eval.fMeasure(0);
		results[index][3] = eval.precision(1);
		results[index][4] = eval.recall(1);
		results[index][5] = eval.fMeasure(1);
		results[index][6] = 1-eval.errorRate();
				
	}
 
开发者ID:Gu-Youngfeng,项目名称:CraTer,代码行数:50,代码来源:FeatureSelectionAve.java


示例14: getEvalResultbyCorrelation

import weka.filters.supervised.attribute.AttributeSelection; //导入依赖的package包/类
/***
	 * <p>To get 10-fold cross validation in one single arff in <b>path</b></p>
	 * <p>Use C4.5 and <b>SMOTE</b>, combined with <b>Correlation</b> to classify the dataset.</p>
	 * @param path dataset path
	 * @throws Exception
	 */
	public static void getEvalResultbyCorrelation(String path, int index) throws Exception{
		
		Instances ins = DataSource.read(path);
		int numAttr = ins.numAttributes();
		ins.setClassIndex(numAttr - 1);
		
		/** correlation filter to process the whole dataset first*/
		CorrelationAttributeEval evall = new CorrelationAttributeEval();
		Ranker ranker = new Ranker();
		AttributeSelection selector = new AttributeSelection();
		
		selector.setEvaluator(evall);
		selector.setSearch(ranker);
		selector.setInputFormat(ins);
		ins = Filter.useFilter(ins, selector);
		
		SMOTE smote = new SMOTE();
		smote.setInputFormat(ins);
		
		/** classifiers setting*/
		J48 j48 = new J48();
//		j48.setConfidenceFactor(0.4f);
		j48.buildClassifier(ins);

		FilteredClassifier fc = new FilteredClassifier();
		fc.setClassifier(j48);
		fc.setFilter(smote);
			
		Evaluation eval = new Evaluation(ins);	
		eval.crossValidateModel(fc, ins, 10, new Random(1));
		
//		System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(0), eval.recall(0), eval.fMeasure(0));
//		System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(1), eval.recall(1), eval.fMeasure(1));
//		System.out.printf(" %4.3f \n\n", (1-eval.errorRate()));
		results[index][0] = eval.precision(0);
		results[index][1] = eval.recall(0);
		results[index][2] = eval.fMeasure(0);
		results[index][3] = eval.precision(1);
		results[index][4] = eval.recall(1);
		results[index][5] = eval.fMeasure(1);
		results[index][6] = 1-eval.errorRate();
				
	}
 
开发者ID:Gu-Youngfeng,项目名称:CraTer,代码行数:50,代码来源:FeatureSelectionAve.java


示例15: getEvalResultbyReliefF

import weka.filters.supervised.attribute.AttributeSelection; //导入依赖的package包/类
/***
	 * <p>To get 10-fold cross validation in one single arff in <b>path</b></p>
	 * <p>Use C4.5 and <b>SMOTE</b>, combined with <b>ReliefF</b> to classify the dataset.</p>
	 * @param path dataset path
	 * @throws Exception
	 */
	public static void getEvalResultbyReliefF(String path, int index) throws Exception{
		
		Instances ins = DataSource.read(path);
		int numAttr = ins.numAttributes();
		ins.setClassIndex(numAttr - 1);
		
		/** correlation filter to process the whole dataset first*/
		ReliefFAttributeEval evall = new ReliefFAttributeEval();
		Ranker ranker = new Ranker();
		AttributeSelection selector = new AttributeSelection();
		
		selector.setEvaluator(evall);
		selector.setSearch(ranker);
		selector.setInputFormat(ins);
		ins = Filter.useFilter(ins, selector);
		
		SMOTE smote = new SMOTE();
		smote.setInputFormat(ins);
		
		/** classifiers setting*/
		J48 j48 = new J48();
//		j48.setConfidenceFactor(0.4f);
		j48.buildClassifier(ins);

		FilteredClassifier fc = new FilteredClassifier();
		fc.setClassifier(j48);
		fc.setFilter(smote);
			
		Evaluation eval = new Evaluation(ins);	
		eval.crossValidateModel(fc, ins, 10, new Random(1));
		
//		System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(0), eval.recall(0), eval.fMeasure(0));
//		System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(1), eval.recall(1), eval.fMeasure(1));
//		System.out.printf(" %4.3f \n\n", (1-eval.errorRate()));
		results[index][0] = eval.precision(0);
		results[index][1] = eval.recall(0);
		results[index][2] = eval.fMeasure(0);
		results[index][3] = eval.precision(1);
		results[index][4] = eval.recall(1);
		results[index][5] = eval.fMeasure(1);
		results[index][6] = 1-eval.errorRate();
				
	}
 
开发者ID:Gu-Youngfeng,项目名称:CraTer,代码行数:50,代码来源:FeatureSelectionAve.java


示例16: showFolds

import weka.filters.supervised.attribute.AttributeSelection; //导入依赖的package包/类
/***
	 * <p>Using Feature Selection method to get 10 folds results in the given project</p>
	 * @param path project path
	 * @param sel label means we use the Feature Selection method
	 * @throws Exception 
	 */
	public static void showFolds(String path, int k, int flag) throws Exception{
			
		Instances data1 = DataSource.read(path);
		data1.setClassIndex(data1.numAttributes()-1);
		if(!data1.classAttribute().isNominal()) // in case of noisy data, return
			return;
		
		/** Feature Selection: Correlation */
		CorrelationAttributeEval evall = new CorrelationAttributeEval();
		Ranker ranker = new Ranker();
		AttributeSelection selector = new AttributeSelection();		
		selector.setEvaluator(evall);
		selector.setSearch(ranker);
		selector.setInputFormat(data1);
		data1 = Filter.useFilter(data1, selector);

		/** Randomize and stratify the dataset*/
		data1.randomize(new Random(1)); 	
		data1.stratify(10);	// 10 folds
		
		double[][] matrix = new double[10][7];	
		
		for(int i=0; i<10; i++){ // To calculate the results in each fold
			
			Instances test = data1.testCV(10, i);
			Instances train = data1.trainCV(10, i);
			
			/** SMOTE */
			SMOTE smote = new SMOTE();
			smote.setInputFormat(train);
			train = Filter.useFilter(train, smote);

			/** C4.5 */
			J48 rf = new J48();
//			RandomForest rf = new RandomForest();
//			rf.setNumIterations(300);
			rf.buildClassifier(train);
			
			Evaluation eval = new Evaluation(train);
			eval.evaluateModel(rf, test); 
					
			matrix[i][6] = 1-eval.errorRate();
			
			matrix[i][0] = eval.precision(0);
			
			matrix[i][1] = eval.recall(0);
			
			matrix[i][2] = eval.fMeasure(0);
			
			matrix[i][3] = eval.precision(1);
			
			matrix[i][4] = eval.recall(1);
			
			matrix[i][5] = eval.fMeasure(1);
			
		}
		
		for(int i=0;i<10;i++){
			for(int j=0;j<7;j++){
				System.out.printf("%15.8f", matrix[i][j]);
			}
			System.out.println("");
		}
	}
 
开发者ID:Gu-Youngfeng,项目名称:CraTer,代码行数:71,代码来源:FoldResultsAve.java


示例17: useFilter2

import weka.filters.supervised.attribute.AttributeSelection; //导入依赖的package包/类
public Instances useFilter2(Instances data,AttributeSelection filter) throws Exception {
  System.out.println("\n2. Filter");
  
  Instances newData = Filter.useFilter(data, filter);
  
  //System.out.println(newData);
  
  for (int i=0;i<newData.numAttributes();i++){
  	System.out.print(newData.attribute(i).name()+" ");
  }
  
  return newData;
}
 
开发者ID:socialsensor,项目名称:computational-verification,代码行数:14,代码来源:AttributeSelectionHandler.java



注:本文中的weka.filters.supervised.attribute.AttributeSelection类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Java View类代码示例发布时间:2022-05-23
下一篇:
Java SVNPropertyValue类代码示例发布时间:2022-05-23
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap