本文整理汇总了Java中org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM类的典型用法代码示例。如果您正苦于以下问题:Java PolynomialGF2mSmallM类的具体用法?Java PolynomialGF2mSmallM怎么用?Java PolynomialGF2mSmallM使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
PolynomialGF2mSmallM类属于org.bouncycastle.pqc.math.linearalgebra包,在下文中一共展示了PolynomialGF2mSmallM类的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Java代码示例。
示例1: McEliecePrivateKeyParameters
import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; //导入依赖的package包/类
/**
* Constructor (used by the {@link McElieceKeyFactory}).
*
* @param oid
* @param n the length of the code
* @param k the dimension of the code
* @param encField the encoded field polynomial defining the finite field
* <tt>GF(2<sup>m</sup>)</tt>
* @param encGoppaPoly the encoded irreducible Goppa polynomial
* @param encSInv the encoded matrix <tt>S<sup>-1</sup></tt>
* @param encP1 the encoded permutation used to generate the systematic
* check matrix
* @param encP2 the encoded permutation used to compute the public
* generator matrix
* @param encH the encoded canonical check matrix
* @param encQInv the encoded matrix used to compute square roots in
* <tt>(GF(2<sup>m</sup>))<sup>t</sup></tt>
* @param params McElieceParameters
*/
public McEliecePrivateKeyParameters(String oid, int n, int k, byte[] encField,
byte[] encGoppaPoly, byte[] encSInv, byte[] encP1, byte[] encP2,
byte[] encH, byte[][] encQInv, McElieceParameters params)
{
super(true, params);
this.oid = oid;
this.n = n;
this.k = k;
field = new GF2mField(encField);
goppaPoly = new PolynomialGF2mSmallM(field, encGoppaPoly);
sInv = new GF2Matrix(encSInv);
p1 = new Permutation(encP1);
p2 = new Permutation(encP2);
h = new GF2Matrix(encH);
qInv = new PolynomialGF2mSmallM[encQInv.length];
for (int i = 0; i < encQInv.length; i++)
{
qInv[i] = new PolynomialGF2mSmallM(field, encQInv[i]);
}
}
开发者ID:Appdome,项目名称:ipack,代码行数:40,代码来源:McEliecePrivateKeyParameters.java
示例2: McElieceCCA2PrivateKeyParameters
import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; //导入依赖的package包/类
/**
* Constructor used by the {@link McElieceKeyFactory}.
*
* @param n the length of the code
* @param k the dimension of the code
* @param encFieldPoly the encoded field polynomial defining the finite field
* <tt>GF(2<sup>m</sup>)</tt>
* @param encGoppaPoly the encoded irreducible Goppa polynomial
* @param encP the encoded permutation
* @param encH the encoded canonical check matrix
* @param encQInv the encoded matrix used to compute square roots in
* <tt>(GF(2^m))^t</tt>
* @param params McElieceCCA2Parameters
*/
public McElieceCCA2PrivateKeyParameters(String oid, int n, int k, byte[] encFieldPoly,
byte[] encGoppaPoly, byte[] encP, byte[] encH, byte[][] encQInv, McElieceCCA2Parameters params)
{
super(true, params);
this.oid = oid;
this.n = n;
this.k = k;
field = new GF2mField(encFieldPoly);
goppaPoly = new PolynomialGF2mSmallM(field, encGoppaPoly);
p = new Permutation(encP);
h = new GF2Matrix(encH);
qInv = new PolynomialGF2mSmallM[encQInv.length];
for (int i = 0; i < encQInv.length; i++)
{
qInv[i] = new PolynomialGF2mSmallM(field, encQInv[i]);
}
}
开发者ID:Appdome,项目名称:ipack,代码行数:32,代码来源:McElieceCCA2PrivateKeyParameters.java
示例3: McElieceCCA2PrivateKey
import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; //导入依赖的package包/类
public McElieceCCA2PrivateKey(ASN1ObjectIdentifier oid, int n, int k, GF2mField field, PolynomialGF2mSmallM goppaPoly, Permutation p, GF2Matrix h, PolynomialGF2mSmallM[] qInv)
{
this.oid = oid;
this.n = n;
this.k = k;
this.encField = field.getEncoded();
this.encGp = goppaPoly.getEncoded();
this.encP = p.getEncoded();
this.encH = h.getEncoded();
this.encqInv = new byte[qInv.length][];
for (int i = 0; i != qInv.length; i++)
{
encqInv[i] = qInv[i].getEncoded();
}
}
开发者ID:Appdome,项目名称:ipack,代码行数:17,代码来源:McElieceCCA2PrivateKey.java
示例4: McEliecePrivateKey
import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; //导入依赖的package包/类
public McEliecePrivateKey(ASN1ObjectIdentifier oid, int n, int k, GF2mField field, PolynomialGF2mSmallM goppaPoly, GF2Matrix sInv, Permutation p1, Permutation p2, GF2Matrix h, PolynomialGF2mSmallM[] qInv)
{
this.oid = oid;
this.n = n;
this.k = k;
this.encField = field.getEncoded();
this.encGp = goppaPoly.getEncoded();
this.encSInv = sInv.getEncoded();
this.encP1 = p1.getEncoded();
this.encP2 = p2.getEncoded();
this.encH = h.getEncoded();
this.encqInv = new byte[qInv.length][];
for (int i = 0; i != qInv.length; i++)
{
encqInv[i] = qInv[i].getEncoded();
}
}
开发者ID:Appdome,项目名称:ipack,代码行数:19,代码来源:McEliecePrivateKey.java
示例5: McElieceCCA2PrivateKeySpec
import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; //导入依赖的package包/类
/**
* Constructor used by the {@link McElieceKeyFactory}.
*
* @param n the length of the code
* @param k the dimension of the code
* @param encFieldPoly the encoded field polynomial defining the finite field
* <tt>GF(2<sup>m</sup>)</tt>
* @param encGoppaPoly the encoded irreducible Goppa polynomial
* @param encP the encoded permutation
* @param encH the encoded canonical check matrix
* @param encQInv the encoded matrix used to compute square roots in
* <tt>(GF(2^m))^t</tt>
*/
public McElieceCCA2PrivateKeySpec(String oid, int n, int k, byte[] encFieldPoly,
byte[] encGoppaPoly, byte[] encP, byte[] encH, byte[][] encQInv)
{
this.oid = oid;
this.n = n;
this.k = k;
field = new GF2mField(encFieldPoly);
goppaPoly = new PolynomialGF2mSmallM(field, encGoppaPoly);
p = new Permutation(encP);
h = new GF2Matrix(encH);
qInv = new PolynomialGF2mSmallM[encQInv.length];
for (int i = 0; i < encQInv.length; i++)
{
qInv[i] = new PolynomialGF2mSmallM(field, encQInv[i]);
}
}
开发者ID:Appdome,项目名称:ipack,代码行数:30,代码来源:McElieceCCA2PrivateKeySpec.java
示例6: McEliecePrivateKeySpec
import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; //导入依赖的package包/类
/**
* Constructor (used by the {@link McElieceKeyFactory}).
*
* @param oid
* @param n the length of the code
* @param k the dimension of the code
* @param encField the encoded field polynomial defining the finite field
* <tt>GF(2<sup>m</sup>)</tt>
* @param encGoppaPoly the encoded irreducible Goppa polynomial
* @param encSInv the encoded matrix <tt>S<sup>-1</sup></tt>
* @param encP1 the encoded permutation used to generate the systematic
* check matrix
* @param encP2 the encoded permutation used to compute the public
* generator matrix
* @param encH the encoded canonical check matrix
* @param encQInv the encoded matrix used to compute square roots in
* <tt>(GF(2<sup>m</sup>))<sup>t</sup></tt>
*/
public McEliecePrivateKeySpec(String oid, int n, int k, byte[] encField,
byte[] encGoppaPoly, byte[] encSInv, byte[] encP1, byte[] encP2,
byte[] encH, byte[][] encQInv)
{
this.oid = oid;
this.n = n;
this.k = k;
field = new GF2mField(encField);
goppaPoly = new PolynomialGF2mSmallM(field, encGoppaPoly);
sInv = new GF2Matrix(encSInv);
p1 = new Permutation(encP1);
p2 = new Permutation(encP2);
h = new GF2Matrix(encH);
qInv = new PolynomialGF2mSmallM[encQInv.length];
for (int i = 0; i < encQInv.length; i++)
{
qInv[i] = new PolynomialGF2mSmallM(field, encQInv[i]);
}
}
开发者ID:Appdome,项目名称:ipack,代码行数:38,代码来源:McEliecePrivateKeySpec.java
示例7: McEliecePrivateKeyParameters
import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; //导入依赖的package包/类
/**
* Constructor.
*
* @param oid
* @param n the length of the code
* @param k the dimension of the code
* @param encField the encoded field polynomial defining the finite field
* <tt>GF(2<sup>m</sup>)</tt>
* @param encGoppaPoly the encoded irreducible Goppa polynomial
* @param encSInv the encoded matrix <tt>S<sup>-1</sup></tt>
* @param encP1 the encoded permutation used to generate the systematic
* check matrix
* @param encP2 the encoded permutation used to compute the public
* generator matrix
* @param encH the encoded canonical check matrix
* @param encQInv the encoded matrix used to compute square roots in
* <tt>(GF(2<sup>m</sup>))<sup>t</sup></tt>
* @param params McElieceParameters
*/
public McEliecePrivateKeyParameters(String oid, int n, int k, byte[] encField,
byte[] encGoppaPoly, byte[] encSInv, byte[] encP1, byte[] encP2,
byte[] encH, byte[][] encQInv, McElieceParameters params)
{
super(true, params);
this.oid = oid;
this.n = n;
this.k = k;
field = new GF2mField(encField);
goppaPoly = new PolynomialGF2mSmallM(field, encGoppaPoly);
sInv = new GF2Matrix(encSInv);
p1 = new Permutation(encP1);
p2 = new Permutation(encP2);
h = new GF2Matrix(encH);
qInv = new PolynomialGF2mSmallM[encQInv.length];
for (int i = 0; i < encQInv.length; i++)
{
qInv[i] = new PolynomialGF2mSmallM(field, encQInv[i]);
}
}
开发者ID:ttt43ttt,项目名称:gwt-crypto,代码行数:40,代码来源:McEliecePrivateKeyParameters.java
示例8: McElieceCCA2PrivateKeyParameters
import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; //导入依赖的package包/类
/**
* Constructor.
*
* @param n the length of the code
* @param k the dimension of the code
* @param encFieldPoly the encoded field polynomial defining the finite field
* <tt>GF(2<sup>m</sup>)</tt>
* @param encGoppaPoly the encoded irreducible Goppa polynomial
* @param encP the encoded permutation
* @param encH the encoded canonical check matrix
* @param encQInv the encoded matrix used to compute square roots in
* <tt>(GF(2^m))^t</tt>
* @param params McElieceCCA2Parameters
*/
public McElieceCCA2PrivateKeyParameters(String oid, int n, int k, byte[] encFieldPoly,
byte[] encGoppaPoly, byte[] encP, byte[] encH, byte[][] encQInv, McElieceCCA2Parameters params)
{
super(true, params);
this.oid = oid;
this.n = n;
this.k = k;
field = new GF2mField(encFieldPoly);
goppaPoly = new PolynomialGF2mSmallM(field, encGoppaPoly);
p = new Permutation(encP);
h = new GF2Matrix(encH);
qInv = new PolynomialGF2mSmallM[encQInv.length];
for (int i = 0; i < encQInv.length; i++)
{
qInv[i] = new PolynomialGF2mSmallM(field, encQInv[i]);
}
}
开发者ID:ttt43ttt,项目名称:gwt-crypto,代码行数:32,代码来源:McElieceCCA2PrivateKeyParameters.java
示例9: McElieceCCA2PrivateKeySpec
import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; //导入依赖的package包/类
/**
* Constructor.
*
* @param n the length of the code
* @param k the dimension of the code
* @param encFieldPoly the encoded field polynomial defining the finite field
* <tt>GF(2<sup>m</sup>)</tt>
* @param encGoppaPoly the encoded irreducible Goppa polynomial
* @param encP the encoded permutation
* @param encH the encoded canonical check matrix
* @param encQInv the encoded matrix used to compute square roots in
* <tt>(GF(2^m))^t</tt>
*/
public McElieceCCA2PrivateKeySpec(String oid, int n, int k, byte[] encFieldPoly,
byte[] encGoppaPoly, byte[] encP, byte[] encH, byte[][] encQInv)
{
this.oid = oid;
this.n = n;
this.k = k;
field = new GF2mField(encFieldPoly);
goppaPoly = new PolynomialGF2mSmallM(field, encGoppaPoly);
p = new Permutation(encP);
h = new GF2Matrix(encH);
qInv = new PolynomialGF2mSmallM[encQInv.length];
for (int i = 0; i < encQInv.length; i++)
{
qInv[i] = new PolynomialGF2mSmallM(field, encQInv[i]);
}
}
开发者ID:thedrummeraki,项目名称:Aki-SSL,代码行数:30,代码来源:McElieceCCA2PrivateKeySpec.java
示例10: McEliecePrivateKeySpec
import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; //导入依赖的package包/类
/**
* Constructor.
*
* @param oid string representation of the object identifier the algorithm for this key.
* @param n the length of the code
* @param k the dimension of the code
* @param encField the encoded field polynomial defining the finite field
* <tt>GF(2<sup>m</sup>)</tt>
* @param encGoppaPoly the encoded irreducible Goppa polynomial
* @param encSInv the encoded matrix <tt>S<sup>-1</sup></tt>
* @param encP1 the encoded permutation used to generate the systematic
* check matrix
* @param encP2 the encoded permutation used to compute the public
* generator matrix
* @param encH the encoded canonical check matrix
* @param encQInv the encoded matrix used to compute square roots in
* <tt>(GF(2<sup>m</sup>))<sup>t</sup></tt>
*/
public McEliecePrivateKeySpec(String oid, int n, int k, byte[] encField,
byte[] encGoppaPoly, byte[] encSInv, byte[] encP1, byte[] encP2,
byte[] encH, byte[][] encQInv)
{
this.oid = oid;
this.n = n;
this.k = k;
field = new GF2mField(encField);
goppaPoly = new PolynomialGF2mSmallM(field, encGoppaPoly);
sInv = new GF2Matrix(encSInv);
p1 = new Permutation(encP1);
p2 = new Permutation(encP2);
h = new GF2Matrix(encH);
qInv = new PolynomialGF2mSmallM[encQInv.length];
for (int i = 0; i < encQInv.length; i++)
{
qInv[i] = new PolynomialGF2mSmallM(field, encQInv[i]);
}
}
开发者ID:thedrummeraki,项目名称:Aki-SSL,代码行数:38,代码来源:McEliecePrivateKeySpec.java
示例11: genRandomTest
import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; //导入依赖的package包/类
/**
* Generates a new random test-case with given parameters.
*
* @param coeffs the number of coefficients of the polynomial
* @param n the number of points of the polynomial
* @param f the number of faulty points
*/
private void genRandomTest(int x[], int y[], int expected[], int coeffs, int n, int f) {
RandomSource rng = new JavaSecureRandom();
rng.fillBytesAsInts(expected);
PolynomialGF2mSmallM poly = new PolynomialGF2mSmallM(new GF2mField(8, 0x11d), expected);
generateRandomIntegerArray(x, n, 256);
for (int i = 0; i < x.length; i++) {
y[i] = poly.evaluateAt(x[i]);
}
int[] idx = new int[n];
int[] delta = new int[255];
generateRandomIntegerArray(idx, f, n);
generateRandomIntegerArray(delta, f, 255);
// Adding a number in range [1, 255] to a number will change it for sure.
for (int i = 0; i < f; i++) {
y[idx[i]] = (y[idx[i]] + delta[i] + 1) % 256;
}
}
开发者ID:Archistar,项目名称:archistar-smc,代码行数:30,代码来源:TestBerlekampWelchDecoder.java
注:本文中的org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论