• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Java PolynomialGF2mSmallM类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Java中org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM的典型用法代码示例。如果您正苦于以下问题:Java PolynomialGF2mSmallM类的具体用法?Java PolynomialGF2mSmallM怎么用?Java PolynomialGF2mSmallM使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



PolynomialGF2mSmallM类属于org.bouncycastle.pqc.math.linearalgebra包,在下文中一共展示了PolynomialGF2mSmallM类的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Java代码示例。

示例1: McEliecePrivateKeyParameters

import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; //导入依赖的package包/类
/**
 * Constructor (used by the {@link McElieceKeyFactory}).
 *
 * @param oid
 * @param n            the length of the code
 * @param k            the dimension of the code
 * @param encField     the encoded field polynomial defining the finite field
 *                     <tt>GF(2<sup>m</sup>)</tt>
 * @param encGoppaPoly the encoded irreducible Goppa polynomial
 * @param encSInv      the encoded matrix <tt>S<sup>-1</sup></tt>
 * @param encP1        the encoded permutation used to generate the systematic
 *                     check matrix
 * @param encP2        the encoded permutation used to compute the public
 *                     generator matrix
 * @param encH         the encoded canonical check matrix
 * @param encQInv      the encoded matrix used to compute square roots in
 *                     <tt>(GF(2<sup>m</sup>))<sup>t</sup></tt>
 * @param params       McElieceParameters
 */
public McEliecePrivateKeyParameters(String oid, int n, int k, byte[] encField,
                                    byte[] encGoppaPoly, byte[] encSInv, byte[] encP1, byte[] encP2,
                                    byte[] encH, byte[][] encQInv, McElieceParameters params)
{
    super(true, params);
    this.oid = oid;
    this.n = n;
    this.k = k;
    field = new GF2mField(encField);
    goppaPoly = new PolynomialGF2mSmallM(field, encGoppaPoly);
    sInv = new GF2Matrix(encSInv);
    p1 = new Permutation(encP1);
    p2 = new Permutation(encP2);
    h = new GF2Matrix(encH);
    qInv = new PolynomialGF2mSmallM[encQInv.length];
    for (int i = 0; i < encQInv.length; i++)
    {
        qInv[i] = new PolynomialGF2mSmallM(field, encQInv[i]);
    }
}
 
开发者ID:Appdome,项目名称:ipack,代码行数:40,代码来源:McEliecePrivateKeyParameters.java


示例2: McElieceCCA2PrivateKeyParameters

import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; //导入依赖的package包/类
/**
 * Constructor used by the {@link McElieceKeyFactory}.
 *
 * @param n            the length of the code
 * @param k            the dimension of the code
 * @param encFieldPoly the encoded field polynomial defining the finite field
 *                     <tt>GF(2<sup>m</sup>)</tt>
 * @param encGoppaPoly the encoded irreducible Goppa polynomial
 * @param encP         the encoded permutation
 * @param encH         the encoded canonical check matrix
 * @param encQInv      the encoded matrix used to compute square roots in
 *                     <tt>(GF(2^m))^t</tt>
 * @param params       McElieceCCA2Parameters
 */
public McElieceCCA2PrivateKeyParameters(String oid, int n, int k, byte[] encFieldPoly,
                                        byte[] encGoppaPoly, byte[] encP, byte[] encH, byte[][] encQInv, McElieceCCA2Parameters params)
{
    super(true, params);
    this.oid = oid;
    this.n = n;
    this.k = k;
    field = new GF2mField(encFieldPoly);
    goppaPoly = new PolynomialGF2mSmallM(field, encGoppaPoly);
    p = new Permutation(encP);
    h = new GF2Matrix(encH);
    qInv = new PolynomialGF2mSmallM[encQInv.length];
    for (int i = 0; i < encQInv.length; i++)
    {
        qInv[i] = new PolynomialGF2mSmallM(field, encQInv[i]);
    }
}
 
开发者ID:Appdome,项目名称:ipack,代码行数:32,代码来源:McElieceCCA2PrivateKeyParameters.java


示例3: McElieceCCA2PrivateKey

import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; //导入依赖的package包/类
public McElieceCCA2PrivateKey(ASN1ObjectIdentifier oid, int n, int k, GF2mField field, PolynomialGF2mSmallM goppaPoly, Permutation p, GF2Matrix h, PolynomialGF2mSmallM[] qInv)
{
    this.oid = oid;
    this.n = n;
    this.k = k;
    this.encField = field.getEncoded();
    this.encGp = goppaPoly.getEncoded();
    this.encP = p.getEncoded();
    this.encH = h.getEncoded();
    this.encqInv = new byte[qInv.length][];

    for (int i = 0; i != qInv.length; i++)
    {
        encqInv[i] = qInv[i].getEncoded();
    }
}
 
开发者ID:Appdome,项目名称:ipack,代码行数:17,代码来源:McElieceCCA2PrivateKey.java


示例4: McEliecePrivateKey

import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; //导入依赖的package包/类
public McEliecePrivateKey(ASN1ObjectIdentifier oid, int n, int k, GF2mField field, PolynomialGF2mSmallM goppaPoly, GF2Matrix sInv, Permutation p1, Permutation p2, GF2Matrix h, PolynomialGF2mSmallM[] qInv)
{
    this.oid = oid;
    this.n = n;
    this.k = k;
    this.encField = field.getEncoded();
    this.encGp = goppaPoly.getEncoded();
    this.encSInv = sInv.getEncoded();
    this.encP1 = p1.getEncoded();
    this.encP2 = p2.getEncoded();
    this.encH = h.getEncoded();
    this.encqInv = new byte[qInv.length][];

    for (int i = 0; i != qInv.length; i++)
    {
        encqInv[i] = qInv[i].getEncoded();
    }
}
 
开发者ID:Appdome,项目名称:ipack,代码行数:19,代码来源:McEliecePrivateKey.java


示例5: McElieceCCA2PrivateKeySpec

import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; //导入依赖的package包/类
/**
 * Constructor used by the {@link McElieceKeyFactory}.
 *
 * @param n            the length of the code
 * @param k            the dimension of the code
 * @param encFieldPoly the encoded field polynomial defining the finite field
 *                     <tt>GF(2<sup>m</sup>)</tt>
 * @param encGoppaPoly the encoded irreducible Goppa polynomial
 * @param encP         the encoded permutation
 * @param encH         the encoded canonical check matrix
 * @param encQInv      the encoded matrix used to compute square roots in
 *                     <tt>(GF(2^m))^t</tt>
 */
public McElieceCCA2PrivateKeySpec(String oid, int n, int k, byte[] encFieldPoly,
                                  byte[] encGoppaPoly, byte[] encP, byte[] encH, byte[][] encQInv)
{
    this.oid = oid;
    this.n = n;
    this.k = k;
    field = new GF2mField(encFieldPoly);
    goppaPoly = new PolynomialGF2mSmallM(field, encGoppaPoly);
    p = new Permutation(encP);
    h = new GF2Matrix(encH);
    qInv = new PolynomialGF2mSmallM[encQInv.length];
    for (int i = 0; i < encQInv.length; i++)
    {
        qInv[i] = new PolynomialGF2mSmallM(field, encQInv[i]);
    }
}
 
开发者ID:Appdome,项目名称:ipack,代码行数:30,代码来源:McElieceCCA2PrivateKeySpec.java


示例6: McEliecePrivateKeySpec

import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; //导入依赖的package包/类
/**
 * Constructor (used by the {@link McElieceKeyFactory}).
 *
 * @param oid
 * @param n            the length of the code
 * @param k            the dimension of the code
 * @param encField     the encoded field polynomial defining the finite field
 *                     <tt>GF(2<sup>m</sup>)</tt>
 * @param encGoppaPoly the encoded irreducible Goppa polynomial
 * @param encSInv      the encoded matrix <tt>S<sup>-1</sup></tt>
 * @param encP1        the encoded permutation used to generate the systematic
 *                     check matrix
 * @param encP2        the encoded permutation used to compute the public
 *                     generator matrix
 * @param encH         the encoded canonical check matrix
 * @param encQInv      the encoded matrix used to compute square roots in
 *                     <tt>(GF(2<sup>m</sup>))<sup>t</sup></tt>
 */
public McEliecePrivateKeySpec(String oid, int n, int k, byte[] encField,
                              byte[] encGoppaPoly, byte[] encSInv, byte[] encP1, byte[] encP2,
                              byte[] encH, byte[][] encQInv)
{
    this.oid = oid;
    this.n = n;
    this.k = k;
    field = new GF2mField(encField);
    goppaPoly = new PolynomialGF2mSmallM(field, encGoppaPoly);
    sInv = new GF2Matrix(encSInv);
    p1 = new Permutation(encP1);
    p2 = new Permutation(encP2);
    h = new GF2Matrix(encH);
    qInv = new PolynomialGF2mSmallM[encQInv.length];
    for (int i = 0; i < encQInv.length; i++)
    {
        qInv[i] = new PolynomialGF2mSmallM(field, encQInv[i]);
    }
}
 
开发者ID:Appdome,项目名称:ipack,代码行数:38,代码来源:McEliecePrivateKeySpec.java


示例7: McEliecePrivateKeyParameters

import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; //导入依赖的package包/类
/**
 * Constructor.
 *
 * @param oid
 * @param n            the length of the code
 * @param k            the dimension of the code
 * @param encField     the encoded field polynomial defining the finite field
 *                     <tt>GF(2<sup>m</sup>)</tt>
 * @param encGoppaPoly the encoded irreducible Goppa polynomial
 * @param encSInv      the encoded matrix <tt>S<sup>-1</sup></tt>
 * @param encP1        the encoded permutation used to generate the systematic
 *                     check matrix
 * @param encP2        the encoded permutation used to compute the public
 *                     generator matrix
 * @param encH         the encoded canonical check matrix
 * @param encQInv      the encoded matrix used to compute square roots in
 *                     <tt>(GF(2<sup>m</sup>))<sup>t</sup></tt>
 * @param params       McElieceParameters
 */
public McEliecePrivateKeyParameters(String oid, int n, int k, byte[] encField,
                                    byte[] encGoppaPoly, byte[] encSInv, byte[] encP1, byte[] encP2,
                                    byte[] encH, byte[][] encQInv, McElieceParameters params)
{
    super(true, params);
    this.oid = oid;
    this.n = n;
    this.k = k;
    field = new GF2mField(encField);
    goppaPoly = new PolynomialGF2mSmallM(field, encGoppaPoly);
    sInv = new GF2Matrix(encSInv);
    p1 = new Permutation(encP1);
    p2 = new Permutation(encP2);
    h = new GF2Matrix(encH);
    qInv = new PolynomialGF2mSmallM[encQInv.length];
    for (int i = 0; i < encQInv.length; i++)
    {
        qInv[i] = new PolynomialGF2mSmallM(field, encQInv[i]);
    }
}
 
开发者ID:ttt43ttt,项目名称:gwt-crypto,代码行数:40,代码来源:McEliecePrivateKeyParameters.java


示例8: McElieceCCA2PrivateKeyParameters

import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; //导入依赖的package包/类
/**
 * Constructor.
 *
 * @param n            the length of the code
 * @param k            the dimension of the code
 * @param encFieldPoly the encoded field polynomial defining the finite field
 *                     <tt>GF(2<sup>m</sup>)</tt>
 * @param encGoppaPoly the encoded irreducible Goppa polynomial
 * @param encP         the encoded permutation
 * @param encH         the encoded canonical check matrix
 * @param encQInv      the encoded matrix used to compute square roots in
 *                     <tt>(GF(2^m))^t</tt>
 * @param params       McElieceCCA2Parameters
 */
public McElieceCCA2PrivateKeyParameters(String oid, int n, int k, byte[] encFieldPoly,
                                        byte[] encGoppaPoly, byte[] encP, byte[] encH, byte[][] encQInv, McElieceCCA2Parameters params)
{
    super(true, params);
    this.oid = oid;
    this.n = n;
    this.k = k;
    field = new GF2mField(encFieldPoly);
    goppaPoly = new PolynomialGF2mSmallM(field, encGoppaPoly);
    p = new Permutation(encP);
    h = new GF2Matrix(encH);
    qInv = new PolynomialGF2mSmallM[encQInv.length];
    for (int i = 0; i < encQInv.length; i++)
    {
        qInv[i] = new PolynomialGF2mSmallM(field, encQInv[i]);
    }
}
 
开发者ID:ttt43ttt,项目名称:gwt-crypto,代码行数:32,代码来源:McElieceCCA2PrivateKeyParameters.java


示例9: McElieceCCA2PrivateKeySpec

import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; //导入依赖的package包/类
/**
 * Constructor.
 *
 * @param n            the length of the code
 * @param k            the dimension of the code
 * @param encFieldPoly the encoded field polynomial defining the finite field
 *                     <tt>GF(2<sup>m</sup>)</tt>
 * @param encGoppaPoly the encoded irreducible Goppa polynomial
 * @param encP         the encoded permutation
 * @param encH         the encoded canonical check matrix
 * @param encQInv      the encoded matrix used to compute square roots in
 *                     <tt>(GF(2^m))^t</tt>
 */
public McElieceCCA2PrivateKeySpec(String oid, int n, int k, byte[] encFieldPoly,
                                  byte[] encGoppaPoly, byte[] encP, byte[] encH, byte[][] encQInv)
{
    this.oid = oid;
    this.n = n;
    this.k = k;
    field = new GF2mField(encFieldPoly);
    goppaPoly = new PolynomialGF2mSmallM(field, encGoppaPoly);
    p = new Permutation(encP);
    h = new GF2Matrix(encH);
    qInv = new PolynomialGF2mSmallM[encQInv.length];
    for (int i = 0; i < encQInv.length; i++)
    {
        qInv[i] = new PolynomialGF2mSmallM(field, encQInv[i]);
    }
}
 
开发者ID:thedrummeraki,项目名称:Aki-SSL,代码行数:30,代码来源:McElieceCCA2PrivateKeySpec.java


示例10: McEliecePrivateKeySpec

import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; //导入依赖的package包/类
/**
 * Constructor.
 *
 * @param oid          string representation of the object identifier the algorithm for this key.
 * @param n            the length of the code
 * @param k            the dimension of the code
 * @param encField     the encoded field polynomial defining the finite field
 *                     <tt>GF(2<sup>m</sup>)</tt>
 * @param encGoppaPoly the encoded irreducible Goppa polynomial
 * @param encSInv      the encoded matrix <tt>S<sup>-1</sup></tt>
 * @param encP1        the encoded permutation used to generate the systematic
 *                     check matrix
 * @param encP2        the encoded permutation used to compute the public
 *                     generator matrix
 * @param encH         the encoded canonical check matrix
 * @param encQInv      the encoded matrix used to compute square roots in
 *                     <tt>(GF(2<sup>m</sup>))<sup>t</sup></tt>
 */
public McEliecePrivateKeySpec(String oid, int n, int k, byte[] encField,
                              byte[] encGoppaPoly, byte[] encSInv, byte[] encP1, byte[] encP2,
                              byte[] encH, byte[][] encQInv)
{
    this.oid = oid;
    this.n = n;
    this.k = k;
    field = new GF2mField(encField);
    goppaPoly = new PolynomialGF2mSmallM(field, encGoppaPoly);
    sInv = new GF2Matrix(encSInv);
    p1 = new Permutation(encP1);
    p2 = new Permutation(encP2);
    h = new GF2Matrix(encH);
    qInv = new PolynomialGF2mSmallM[encQInv.length];
    for (int i = 0; i < encQInv.length; i++)
    {
        qInv[i] = new PolynomialGF2mSmallM(field, encQInv[i]);
    }
}
 
开发者ID:thedrummeraki,项目名称:Aki-SSL,代码行数:38,代码来源:McEliecePrivateKeySpec.java


示例11: genRandomTest

import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; //导入依赖的package包/类
/**
 * Generates a new random test-case with given parameters.
 *
 * @param coeffs the number of coefficients of the polynomial
 * @param n the number of points of the polynomial
 * @param f the number of faulty points
 */
private void genRandomTest(int x[], int y[], int expected[], int coeffs, int n, int f) {
    RandomSource rng = new JavaSecureRandom();
    rng.fillBytesAsInts(expected);

    PolynomialGF2mSmallM poly = new PolynomialGF2mSmallM(new GF2mField(8, 0x11d), expected);

    generateRandomIntegerArray(x, n, 256);
    for (int i = 0; i < x.length; i++) {
        y[i] = poly.evaluateAt(x[i]);
    }

    int[] idx = new int[n];
    int[] delta = new int[255];

    generateRandomIntegerArray(idx, f, n);
    generateRandomIntegerArray(delta, f, 255);

    // Adding a number in range [1, 255] to a number will change it for sure.
    for (int i = 0; i < f; i++) {
        y[idx[i]] = (y[idx[i]] + delta[i] + 1) % 256;
    }
}
 
开发者ID:Archistar,项目名称:archistar-smc,代码行数:30,代码来源:TestBerlekampWelchDecoder.java



注:本文中的org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Java TypeDefinition类代码示例发布时间:2022-05-23
下一篇:
Java FileStatus类代码示例发布时间:2022-05-23
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap