本文整理汇总了Java中org.jpmml.converter.CategoricalLabel类的典型用法代码示例。如果您正苦于以下问题:Java CategoricalLabel类的具体用法?Java CategoricalLabel怎么用?Java CategoricalLabel使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
CategoricalLabel类属于org.jpmml.converter包,在下文中一共展示了CategoricalLabel类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Java代码示例。
示例1: encodeMiningModel
import org.jpmml.converter.CategoricalLabel; //导入依赖的package包/类
@Override
public MiningModel encodeMiningModel(List<Tree> trees, Integer numIteration, Schema schema){
Schema segmentSchema = new Schema(new ContinuousLabel(null, DataType.DOUBLE), schema.getFeatures());
List<MiningModel> miningModels = new ArrayList<>();
CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel();
for(int i = 0, rows = categoricalLabel.size(), columns = (trees.size() / rows); i < rows; i++){
MiningModel miningModel = createMiningModel(FortranMatrixUtil.getRow(trees, rows, columns, i), numIteration, segmentSchema)
.setOutput(ModelUtil.createPredictedOutput(FieldName.create("lgbmValue(" + categoricalLabel.getValue(i) + ")"), OpType.CONTINUOUS, DataType.DOUBLE));
miningModels.add(miningModel);
}
return MiningModelUtil.createClassification(miningModels, RegressionModel.NormalizationMethod.SOFTMAX, true, schema);
}
开发者ID:jpmml,项目名称:jpmml-lightgbm,代码行数:18,代码来源:MultinomialLogisticRegression.java
示例2: registerOutputFields
import org.jpmml.converter.CategoricalLabel; //导入依赖的package包/类
@Override
public List<OutputField> registerOutputFields(Label label, SparkMLEncoder encoder){
List<OutputField> result = super.registerOutputFields(label, encoder);
MiningFunction miningFunction = getMiningFunction();
switch(miningFunction){
case CLASSIFICATION:
CategoricalLabel categoricalLabel = (CategoricalLabel)label;
result = new ArrayList<>(result);
result.addAll(ModelUtil.createProbabilityFields(DataType.DOUBLE, categoricalLabel.getValues()));
break;
default:
break;
}
return result;
}
开发者ID:jpmml,项目名称:jpmml-sparkml,代码行数:19,代码来源:GeneralizedLinearRegressionModelConverter.java
示例3: encodeMiningModel
import org.jpmml.converter.CategoricalLabel; //导入依赖的package包/类
@Override
public MiningModel encodeMiningModel(List<RegTree> regTrees, float base_score, Integer ntreeLimit, Schema schema){
Schema segmentSchema = new Schema(new ContinuousLabel(null, DataType.FLOAT), schema.getFeatures());
List<MiningModel> miningModels = new ArrayList<>();
CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel();
for(int i = 0, columns = categoricalLabel.size(), rows = (regTrees.size() / columns); i < columns; i++){
MiningModel miningModel = createMiningModel(CMatrixUtil.getColumn(regTrees, rows, columns, i), base_score, ntreeLimit, segmentSchema)
.setOutput(ModelUtil.createPredictedOutput(FieldName.create("xgbValue(" + categoricalLabel.getValue(i) + ")"), OpType.CONTINUOUS, DataType.FLOAT));
miningModels.add(miningModel);
}
return MiningModelUtil.createClassification(miningModels, RegressionModel.NormalizationMethod.SOFTMAX, true, schema);
}
开发者ID:jpmml,项目名称:jpmml-xgboost,代码行数:18,代码来源:MultinomialLogisticRegression.java
示例4: createClassificationNeuralOutputs
import org.jpmml.converter.CategoricalLabel; //导入依赖的package包/类
static
public NeuralOutputs createClassificationNeuralOutputs(List<? extends Entity> entities, CategoricalLabel categoricalLabel){
if(entities.size() != categoricalLabel.size()){
throw new IllegalArgumentException();
}
NeuralOutputs neuralOutputs = new NeuralOutputs();
for(int i = 0; i < categoricalLabel.size(); i++){
Entity entity = entities.get(i);
DerivedField derivedField = new DerivedField(OpType.CATEGORICAL, categoricalLabel.getDataType())
.setExpression(new NormDiscrete(categoricalLabel.getName(), categoricalLabel.getValue(i)));
NeuralOutput neuralOutput = new NeuralOutput()
.setOutputNeuron(entity.getId())
.setDerivedField(derivedField);
neuralOutputs.addNeuralOutputs(neuralOutput);
}
return neuralOutputs;
}
开发者ID:jpmml,项目名称:jpmml-converter,代码行数:25,代码来源:NeuralNetworkUtil.java
示例5: encodeModel
import org.jpmml.converter.CategoricalLabel; //导入依赖的package包/类
@Override
public MiningModel encodeModel(Schema schema){
List<? extends Classifier> estimators = getEstimators();
List<List<Integer>> estimatorsFeatures = getEstimatorsFeatures();
Segmentation.MultipleModelMethod multipleModelMethod = Segmentation.MultipleModelMethod.AVERAGE;
for(Classifier estimator : estimators){
if(!estimator.hasProbabilityDistribution()){
multipleModelMethod = Segmentation.MultipleModelMethod.MAJORITY_VOTE;
break;
}
}
MiningModel miningModel = BaggingUtil.encodeBagging(estimators, estimatorsFeatures, multipleModelMethod, MiningFunction.CLASSIFICATION, schema)
.setOutput(ModelUtil.createProbabilityOutput(DataType.DOUBLE, (CategoricalLabel)schema.getLabel()));
return miningModel;
}
开发者ID:jpmml,项目名称:jpmml-sklearn,代码行数:22,代码来源:BaggingClassifier.java
示例6: encodeLabel
import org.jpmml.converter.CategoricalLabel; //导入依赖的package包/类
@Override
public Label encodeLabel(FieldName targetField, List<String> targetCategories, PMMLEncoder encoder){
targetCategories = prepareTargetCategories(targetCategories);
DataField dataField = encoder.createDataField(targetField, OpType.CATEGORICAL, DataType.STRING, targetCategories);
return new CategoricalLabel(dataField);
}
开发者ID:jpmml,项目名称:jpmml-lightgbm,代码行数:9,代码来源:Classification.java
示例7: encodeModel
import org.jpmml.converter.CategoricalLabel; //导入依赖的package包/类
@Override
public GeneralRegressionModel encodeModel(Schema schema){
GeneralizedLinearRegressionModel model = getTransformer();
String targetCategory = null;
MiningFunction miningFunction = getMiningFunction();
switch(miningFunction){
case CLASSIFICATION:
CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel();
if(categoricalLabel.size() != 2){
throw new IllegalArgumentException();
}
targetCategory = categoricalLabel.getValue(1);
break;
default:
break;
}
GeneralRegressionModel generalRegressionModel = new GeneralRegressionModel(GeneralRegressionModel.ModelType.GENERALIZED_LINEAR, miningFunction, ModelUtil.createMiningSchema(schema.getLabel()), null, null, null)
.setDistribution(parseFamily(model.getFamily()))
.setLinkFunction(parseLinkFunction(model.getLink()))
.setLinkParameter(parseLinkParameter(model.getLink()));
GeneralRegressionModelUtil.encodeRegressionTable(generalRegressionModel, schema.getFeatures(), model.intercept(), VectorUtil.toList(model.coefficients()), targetCategory);
return generalRegressionModel;
}
开发者ID:jpmml,项目名称:jpmml-sparkml,代码行数:31,代码来源:GeneralizedLinearRegressionModelConverter.java
示例8: registerOutputFields
import org.jpmml.converter.CategoricalLabel; //导入依赖的package包/类
@Override
public List<OutputField> registerOutputFields(Label label, SparkMLEncoder encoder){
MultilayerPerceptronClassificationModel model = getTransformer();
List<OutputField> result = super.registerOutputFields(label, encoder);
if(!(model instanceof HasProbabilityCol)){
CategoricalLabel categoricalLabel = (CategoricalLabel)label;
result = new ArrayList<>(result);
result.addAll(ModelUtil.createProbabilityFields(DataType.DOUBLE, categoricalLabel.getValues()));
}
return result;
}
开发者ID:jpmml,项目名称:jpmml-sparkml,代码行数:16,代码来源:MultilayerPerceptronClassificationModelConverter.java
示例9: createBinaryLogisticClassification
import org.jpmml.converter.CategoricalLabel; //导入依赖的package包/类
static
public RegressionModel createBinaryLogisticClassification(MathContext mathContext, List<? extends Feature> features, List<Double> coefficients, Double intercept, RegressionModel.NormalizationMethod normalizationMethod, boolean hasProbabilityDistribution, Schema schema){
CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel();
if(categoricalLabel.size() != 2){
throw new IllegalArgumentException();
} // End if
if(normalizationMethod != null){
switch(normalizationMethod){
case NONE:
case LOGIT:
case PROBIT:
case CLOGLOG:
case LOGLOG:
case CAUCHIT:
break;
default:
throw new IllegalArgumentException();
}
}
RegressionTable activeRegressionTable = RegressionModelUtil.createRegressionTable(features, coefficients, intercept)
.setTargetCategory(categoricalLabel.getValue(1));
RegressionTable passiveRegressionTable = RegressionModelUtil.createRegressionTable(Collections.<Feature>emptyList(), Collections.<Double>emptyList(), null)
.setTargetCategory(categoricalLabel.getValue(0));
RegressionModel regressionModel = new RegressionModel(MiningFunction.CLASSIFICATION, ModelUtil.createMiningSchema(categoricalLabel), null)
.setNormalizationMethod(normalizationMethod)
.setMathContext(ModelUtil.simplifyMathContext(mathContext))
.addRegressionTables(activeRegressionTable, passiveRegressionTable)
.setOutput(hasProbabilityDistribution ? ModelUtil.createProbabilityOutput(mathContext, categoricalLabel) : null);
return regressionModel;
}
开发者ID:jpmml,项目名称:jpmml-converter,代码行数:38,代码来源:RegressionModelUtil.java
示例10: encodeModel
import org.jpmml.converter.CategoricalLabel; //导入依赖的package包/类
@Override
public MiningModel encodeModel(Schema schema){
MiningModel miningModel = BaseForestUtil.encodeBaseForest(this, Segmentation.MultipleModelMethod.AVERAGE, MiningFunction.CLASSIFICATION, schema)
.setOutput(ModelUtil.createProbabilityOutput(DataType.DOUBLE, (CategoricalLabel)schema.getLabel()));
return miningModel;
}
开发者ID:jpmml,项目名称:jpmml-sklearn,代码行数:8,代码来源:BaseForestClassifier.java
示例11: encodeModel
import org.jpmml.converter.CategoricalLabel; //导入依赖的package包/类
@Override
public TreeModel encodeModel(Schema schema){
TreeModel treeModel = TreeModelUtil.encodeTreeModel(this, MiningFunction.CLASSIFICATION, schema)
.setOutput(ModelUtil.createProbabilityOutput(DataType.DOUBLE, (CategoricalLabel)schema.getLabel()));
return TreeModelUtil.transform(this, treeModel);
}
开发者ID:jpmml,项目名称:jpmml-sklearn,代码行数:8,代码来源:TreeClassifier.java
示例12: checkSize
import org.jpmml.converter.CategoricalLabel; //导入依赖的package包/类
static
public void checkSize(int size, CategoricalLabel categoricalLabel){
if(categoricalLabel.size() != size){
throw new IllegalArgumentException("Expected " + size + " class(es), got " + categoricalLabel.size() + " class(es)");
}
}
开发者ID:jpmml,项目名称:jpmml-sklearn,代码行数:8,代码来源:ClassifierUtil.java
示例13: encodeModel
import org.jpmml.converter.CategoricalLabel; //导入依赖的package包/类
@Override
public NeuralNetwork encodeModel(Schema schema){
String activation = getActivation();
List<? extends HasArray> coefs = getCoefs();
List<? extends HasArray> intercepts = getIntercepts();
NeuralNetwork neuralNetwork = BaseMultilayerPerceptronUtil.encodeNeuralNetwork(MiningFunction.CLASSIFICATION, activation, coefs, intercepts, schema)
.setOutput(ModelUtil.createProbabilityOutput(DataType.DOUBLE, (CategoricalLabel)schema.getLabel()));
return neuralNetwork;
}
开发者ID:jpmml,项目名称:jpmml-sklearn,代码行数:13,代码来源:MLPClassifier.java
示例14: encodeClassificationScore
import org.jpmml.converter.CategoricalLabel; //导入依赖的package包/类
static
private Node encodeClassificationScore(Node node, RDoubleVector probabilities, Schema schema){
CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel();
if(categoricalLabel.size() != probabilities.size()){
throw new IllegalArgumentException();
}
Double maxProbability = null;
for(int i = 0; i < categoricalLabel.size(); i++){
String value = categoricalLabel.getValue(i);
Double probability = probabilities.getValue(i);
if(maxProbability == null || (maxProbability).compareTo(probability) < 0){
node.setScore(value);
maxProbability = probability;
}
ScoreDistribution scoreDistribution = new ScoreDistribution(value, probability);
node.addScoreDistributions(scoreDistribution);
}
return node;
}
开发者ID:jpmml,项目名称:jpmml-r,代码行数:28,代码来源:BinaryTreeConverter.java
示例15: encodeModel
import org.jpmml.converter.CategoricalLabel; //导入依赖的package包/类
@Override
public NeuralNetwork encodeModel(TensorFlowEncoder encoder){
DataField dataField = encoder.createDataField(FieldName.create("_target"), OpType.CATEGORICAL, DataType.INTEGER);
NeuralNetwork neuralNetwork = encodeNeuralNetwork(encoder);
List<NeuralLayer> neuralLayers = neuralNetwork.getNeuralLayers();
NeuralLayer neuralLayer = Iterables.getLast(neuralLayers);
List<Neuron> neurons = neuralLayer.getNeurons();
List<String> categories;
if(neurons.size() == 1){
neuralLayer.setActivationFunction(NeuralNetwork.ActivationFunction.LOGISTIC);
Neuron neuron = Iterables.getOnlyElement(neurons);
neuralLayer = new NeuralLayer()
.setActivationFunction(NeuralNetwork.ActivationFunction.IDENTITY);
categories = Arrays.asList("0", "1");
// p(no event) = 1 - p(event)
Neuron passiveNeuron = new Neuron()
.setId(String.valueOf(neuralLayers.size() + 1) + "/" + categories.get(0))
.setBias(ValueUtil.floatToDouble(1f))
.addConnections(new Connection(neuron.getId(), -1f));
// p(event)
Neuron activeNeuron = new Neuron()
.setId(String.valueOf(neuralLayers.size() + 1) + "/" + categories.get(1))
.setBias(null)
.addConnections(new Connection(neuron.getId(), 1f));
neuralLayer.addNeurons(passiveNeuron, activeNeuron);
neuralNetwork.addNeuralLayers(neuralLayer);
neurons = neuralLayer.getNeurons();
} else
if(neurons.size() > 2){
neuralLayer
.setActivationFunction(NeuralNetwork.ActivationFunction.IDENTITY)
.setNormalizationMethod(NeuralNetwork.NormalizationMethod.SOFTMAX);
categories = new ArrayList<>();
for(int i = 0; i < neurons.size(); i++){
String category = String.valueOf(i);
categories.add(category);
}
} else
{
throw new IllegalArgumentException();
}
dataField = encoder.toCategorical(dataField.getName(), categories);
CategoricalLabel categoricalLabel = new CategoricalLabel(dataField);
neuralNetwork
.setMiningFunction(MiningFunction.CLASSIFICATION)
.setMiningSchema(ModelUtil.createMiningSchema(categoricalLabel))
.setNeuralOutputs(NeuralNetworkUtil.createClassificationNeuralOutputs(neurons, categoricalLabel))
.setOutput(ModelUtil.createProbabilityOutput(DataType.FLOAT, categoricalLabel));
return neuralNetwork;
}
开发者ID:jpmml,项目名称:jpmml-tensorflow,代码行数:74,代码来源:DNNClassifier.java
示例16: encodeModel
import org.jpmml.converter.CategoricalLabel; //导入依赖的package包/类
@Override
public RegressionModel encodeModel(TensorFlowEncoder encoder){
DataField dataField = encoder.createDataField(FieldName.create("_target"), OpType.CATEGORICAL, DataType.INTEGER);
RegressionModel regressionModel = encodeRegressionModel(encoder);
List<RegressionTable> regressionTables = regressionModel.getRegressionTables();
List<String> categories;
if(regressionTables.size() == 1){
categories = Arrays.asList("0", "1");
RegressionTable activeRegressionTable = regressionTables.get(0)
.setTargetCategory(categories.get(1));
RegressionTable passiveRegressionTable = new RegressionTable(0)
.setTargetCategory(categories.get(0));
regressionModel.addRegressionTables(passiveRegressionTable);
} else
if(regressionTables.size() > 2){
categories = new ArrayList<>();
for(int i = 0; i < regressionTables.size(); i++){
RegressionTable regressionTable = regressionTables.get(i);
String category = String.valueOf(i);
regressionTable.setTargetCategory(category);
categories.add(category);
}
} else
{
throw new IllegalArgumentException();
}
dataField = encoder.toCategorical(dataField.getName(), categories);
CategoricalLabel categoricalLabel = new CategoricalLabel(dataField);
regressionModel
.setMiningFunction(MiningFunction.CLASSIFICATION)
.setNormalizationMethod(RegressionModel.NormalizationMethod.SOFTMAX)
.setMiningSchema(ModelUtil.createMiningSchema(categoricalLabel))
.setOutput(ModelUtil.createProbabilityOutput(DataType.FLOAT, categoricalLabel));
return regressionModel;
}
开发者ID:jpmml,项目名称:jpmml-tensorflow,代码行数:52,代码来源:LinearClassifier.java
示例17: createClassification
import org.jpmml.converter.CategoricalLabel; //导入依赖的package包/类
static
public MiningModel createClassification(List<? extends Model> models, RegressionModel.NormalizationMethod normalizationMethod, boolean hasProbabilityDistribution, Schema schema){
CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel();
if(categoricalLabel.size() < 3 || categoricalLabel.size() != models.size()){
throw new IllegalArgumentException();
} // End if
if(normalizationMethod != null){
switch(normalizationMethod){
case NONE:
case SIMPLEMAX:
case SOFTMAX:
break;
default:
throw new IllegalArgumentException();
}
}
MathContext mathContext = null;
List<RegressionTable> regressionTables = new ArrayList<>();
for(int i = 0; i < categoricalLabel.size(); i++){
Model model = models.get(i);
MathContext modelMathContext = model.getMathContext();
if(modelMathContext == null){
modelMathContext = MathContext.DOUBLE;
} // End if
if(mathContext == null){
mathContext = modelMathContext;
} else
{
if(!Objects.equals(mathContext, modelMathContext)){
throw new IllegalArgumentException();
}
}
Feature feature = MiningModelUtil.MODEL_PREDICTION.apply(model);
RegressionTable regressionTable = RegressionModelUtil.createRegressionTable(Collections.singletonList(feature), Collections.singletonList(1d), null)
.setTargetCategory(categoricalLabel.getValue(i));
regressionTables.add(regressionTable);
}
RegressionModel regressionModel = new RegressionModel(MiningFunction.CLASSIFICATION, ModelUtil.createMiningSchema(categoricalLabel), regressionTables)
.setNormalizationMethod(normalizationMethod)
.setMathContext(ModelUtil.simplifyMathContext(mathContext))
.setOutput(hasProbabilityDistribution ? ModelUtil.createProbabilityOutput(mathContext, categoricalLabel) : null);
List<Model> segmentationModels = new ArrayList<>(models);
segmentationModels.add(regressionModel);
return createModelChain(segmentationModels, schema);
}
开发者ID:jpmml,项目名称:jpmml-converter,代码行数:61,代码来源:MiningModelUtil.java
示例18: encodeModel
import org.jpmml.converter.CategoricalLabel; //导入依赖的package包/类
@Override
public Model encodeModel(Schema schema){
List<? extends Classifier> estimators = getEstimators();
List<? extends Number> weights = getWeights();
CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel();
List<Model> models = new ArrayList<>();
for(Classifier estimator : estimators){
Model model = estimator.encodeModel(schema);
models.add(model);
}
String voting = getVoting();
Segmentation.MultipleModelMethod multipleModelMethod = parseVoting(voting, (weights != null && weights.size() > 0));
MiningModel miningModel = new MiningModel(MiningFunction.CLASSIFICATION, ModelUtil.createMiningSchema(categoricalLabel))
.setSegmentation(MiningModelUtil.createSegmentation(multipleModelMethod, models, weights))
.setOutput(ModelUtil.createProbabilityOutput(DataType.DOUBLE, categoricalLabel));
return miningModel;
}
开发者ID:jpmml,项目名称:jpmml-sklearn,代码行数:26,代码来源:VotingClassifier.java
示例19: encodeModel
import org.jpmml.converter.CategoricalLabel; //导入依赖的package包/类
@Override
public RegressionModel encodeModel(Schema schema){
int[] shape = getCoefShape();
int numberOfClasses = shape[0];
int numberOfFeatures = shape[1];
boolean hasProbabilityDistribution = hasProbabilityDistribution();
List<? extends Number> coef = getCoef();
List<? extends Number> intercepts = getIntercept();
CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel();
List<Feature> features = schema.getFeatures();
if(numberOfClasses == 1){
ClassifierUtil.checkSize(2, categoricalLabel);
return RegressionModelUtil.createBinaryLogisticClassification(features, ValueUtil.asDoubles(CMatrixUtil.getRow(coef, numberOfClasses, numberOfFeatures, 0)), ValueUtil.asDouble(intercepts.get(0)), RegressionModel.NormalizationMethod.LOGIT, hasProbabilityDistribution, schema);
} else
if(numberOfClasses >= 3){
ClassifierUtil.checkSize(numberOfClasses, categoricalLabel);
List<RegressionTable> regressionTables = new ArrayList<>();
for(int i = 0, rows = categoricalLabel.size(); i < rows; i++){
RegressionTable regressionTable = RegressionModelUtil.createRegressionTable(features, ValueUtil.asDoubles(CMatrixUtil.getRow(coef, numberOfClasses, numberOfFeatures, i)), ValueUtil.asDouble(intercepts.get(i)))
.setTargetCategory(categoricalLabel.getValue(i));
regressionTables.add(regressionTable);
}
RegressionModel regressionModel = new RegressionModel(MiningFunction.CLASSIFICATION, ModelUtil.createMiningSchema(categoricalLabel), regressionTables)
.setNormalizationMethod(RegressionModel.NormalizationMethod.LOGIT)
.setOutput(hasProbabilityDistribution ? ModelUtil.createProbabilityOutput(DataType.DOUBLE, categoricalLabel) : null);
return regressionModel;
} else
{
throw new IllegalArgumentException();
}
}
开发者ID:jpmml,项目名称:jpmml-sklearn,代码行数:46,代码来源:BaseLinearClassifier.java
示例20: encodeModel
import org.jpmml.converter.CategoricalLabel; //导入依赖的package包/类
@Override
public TreeModel encodeModel(Schema schema){
List<?> classes = getClasses();
List<? extends Number> classPrior = getClassPrior();
Object constant = getConstant();
String strategy = getStrategy();
ClassDictUtil.checkSize(classes, classPrior);
CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel();
int index;
double[] probabilities;
switch(strategy){
case "constant":
{
index = classes.indexOf(constant);
probabilities = new double[classes.size()];
probabilities[index] = 1d;
}
break;
case "most_frequent":
{
index = classPrior.indexOf(Collections.max((List)classPrior));
probabilities = new double[classes.size()];
probabilities[index] = 1d;
}
break;
case "prior":
{
index = classPrior.indexOf(Collections.max((List)classPrior));
probabilities = Doubles.toArray(classPrior);
}
break;
default:
throw new IllegalArgumentException(strategy);
}
Node root = new Node()
.setPredicate(new True())
.setScore(ValueUtil.formatValue(classes.get(index)));
for(int i = 0; i < classes.size(); i++){
ScoreDistribution scoreDistribution = new ScoreDistribution(ValueUtil.formatValue(classes.get(i)), probabilities[i]);
root.addScoreDistributions(scoreDistribution);
}
TreeModel treeModel = new TreeModel(MiningFunction.CLASSIFICATION, ModelUtil.createMiningSchema(categoricalLabel), root)
.setOutput(ModelUtil.createProbabilityOutput(DataType.DOUBLE, categoricalLabel));
return treeModel;
}
开发者ID:jpmml,项目名称:jpmml-sklearn,代码行数:59,代码来源:DummyClassifier.java
注:本文中的org.jpmml.converter.CategoricalLabel类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论