• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Java ContingencyTables类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Java中weka.core.ContingencyTables的典型用法代码示例。如果您正苦于以下问题:Java ContingencyTables类的具体用法?Java ContingencyTables怎么用?Java ContingencyTables使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



ContingencyTables类属于weka.core包,在下文中一共展示了ContingencyTables类的18个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Java代码示例。

示例1: splitEnt

import weka.core.ContingencyTables; //导入依赖的package包/类
/**
 * Help method for computing the split entropy.
 */
private final double splitEnt(Distribution bags, double totalnoInst) {

  double returnValue = 0;
  double noUnknown;
  int i;

  noUnknown = totalnoInst - bags.total();
  if (Utils.gr(bags.total(), 0)) {
    for (i = 0; i < bags.numBags(); i++) {
      returnValue = returnValue - lnFunc(bags.perBag(i));
    }
    returnValue = returnValue - lnFunc(noUnknown);
    returnValue = returnValue + lnFunc(totalnoInst);
  }
  return returnValue / ContingencyTables.log2;
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:20,代码来源:GainRatioSplitCrit.java


示例2: splitCritValue

import weka.core.ContingencyTables; //导入依赖的package包/类
/**
  * Computes entropy of test distribution with respect to training distribution.
  */
 public final double splitCritValue(Distribution train, Distribution test) {

   double result = 0;
   int numClasses = 0;
   int i, j;
   
   // Find out relevant number of classes
   for (j = 0; j < test.numClasses(); j++)
     if (Utils.gr(train.perClass(j), 0) || Utils.gr(test.perClass(j), 0))
numClasses++;

   // Compute entropy of test data with respect to training data
   for (i = 0; i < test.numBags(); i++)
     if (Utils.gr(test.perBag(i),0)) {
for (j = 0; j < test.numClasses(); j++)
  if (Utils.gr(test.perClassPerBag(i, j), 0))
    result -= test.perClassPerBag(i, j)*
      Math.log(train.perClassPerBag(i, j) + 1);
result += test.perBag(i) * Math.log(train.perBag(i) + numClasses);
     }
 
   return result / ContingencyTables.log2;
 }
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:27,代码来源:EntropySplitCrit.java


示例3: lnFunc

import weka.core.ContingencyTables; //导入依赖的package包/类
/**
 * Help method for computing entropy.
 */
public final double lnFunc(double num) {

  // Constant hard coded for efficiency reasons
  if (num < 1e-6)
    return 0;
  else
    return ContingencyTables.lnFunc(num);
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:12,代码来源:EntropyBasedSplitCrit.java


示例4: oldEnt

import weka.core.ContingencyTables; //导入依赖的package包/类
/**
 * Computes entropy of distribution before splitting.
 */
public final double oldEnt(Distribution bags) {

  double returnValue = 0;
  int j;

  for (j=0;j<bags.numClasses();j++)
    returnValue = returnValue+lnFunc(bags.perClass(j));
  return (lnFunc(bags.total())-returnValue)/ContingencyTables.log2; 
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:13,代码来源:EntropyBasedSplitCrit.java


示例5: newEnt

import weka.core.ContingencyTables; //导入依赖的package包/类
/**
  * Computes entropy of distribution after splitting.
  */
 public final double newEnt(Distribution bags) {
   
   double returnValue = 0;
   int i,j;

   for (i=0;i<bags.numBags();i++){
     for (j=0;j<bags.numClasses();j++)
returnValue = returnValue+lnFunc(bags.perClassPerBag(i,j));
     returnValue = returnValue-lnFunc(bags.perBag(i));
   }
   return -(returnValue/ContingencyTables.log2);
 }
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:16,代码来源:EntropyBasedSplitCrit.java


示例6: splitEnt

import weka.core.ContingencyTables; //导入依赖的package包/类
/**
 * Computes entropy after splitting without considering the
 * class values.
 */
public final double splitEnt(Distribution bags) {

  double returnValue = 0;
  int i;

  for (i=0;i<bags.numBags();i++)
    returnValue = returnValue+lnFunc(bags.perBag(i));
  return (lnFunc(bags.total())-returnValue)/ContingencyTables.log2;
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:14,代码来源:EntropyBasedSplitCrit.java


示例7: chooseIndex

import weka.core.ContingencyTables; //导入依赖的package包/类
/**
 * Method for choosing a subset to expand.
 */
public final int chooseIndex() {

  int minIndex = -1;
  double estimated, min = Double.MAX_VALUE;
  int i, j;

  for (i = 0; i < m_sons.length; i++) {
    if (son(i) == null) {
      if (Utils.sm(localModel().distribution().perBag(i), m_minNumObj)) {
        estimated = Double.MAX_VALUE;
      } else {
        estimated = 0;
        for (j = 0; j < localModel().distribution().numClasses(); j++) {
          estimated -= m_splitCrit.lnFunc(localModel().distribution()
            .perClassPerBag(i, j));
        }
        estimated += m_splitCrit
          .lnFunc(localModel().distribution().perBag(i));
        estimated /= (localModel().distribution().perBag(i) * ContingencyTables.log2);
      }
      if (Utils.smOrEq(estimated, 0)) {
        return i;
      }
      if (Utils.sm(estimated, min)) {
        min = estimated;
        minIndex = i;
      }
    }
  }

  return minIndex;
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:36,代码来源:ClassifierDecList.java


示例8: findSplitNominalNominal

import weka.core.ContingencyTables; //导入依赖的package包/类
/**
  * Finds best split for nominal attribute and nominal class
  * and returns value.
  *
  * @param index attribute index
  * @return value of criterion for the best split
  * @throws Exception if something goes wrong
  */
 protected double findSplitNominalNominal(int index) throws Exception {

   double bestVal = Double.MAX_VALUE, currVal;
   double[][] counts = new double[m_Instances.attribute(index).numValues() 
			  + 1][m_Instances.numClasses()];
   double[] sumCounts = new double[m_Instances.numClasses()];
   double[][] bestDist = new double[3][m_Instances.numClasses()];
   int numMissing = 0;

   // Compute counts for all the values
   for (int i = 0; i < m_Instances.numInstances(); i++) {
     Instance inst = m_Instances.instance(i);
     if (inst.isMissing(index)) {
numMissing++;
counts[m_Instances.attribute(index).numValues()]
  [(int)inst.classValue()] += inst.weight();
     } else {
counts[(int)inst.value(index)][(int)inst.classValue()] += inst
  .weight();
     }
   }

   // Compute sum of counts
   for (int i = 0; i < m_Instances.attribute(index).numValues(); i++) {
     for (int j = 0; j < m_Instances.numClasses(); j++) {
sumCounts[j] += counts[i][j];
     }
   }
   
   // Make split counts for each possible split and evaluate
   System.arraycopy(counts[m_Instances.attribute(index).numValues()], 0,
	     m_Distribution[2], 0, m_Instances.numClasses());
   for (int i = 0; i < m_Instances.attribute(index).numValues(); i++) {
     for (int j = 0; j < m_Instances.numClasses(); j++) {
m_Distribution[0][j] = counts[i][j];
m_Distribution[1][j] = sumCounts[j] - counts[i][j];
     }
     currVal = ContingencyTables.entropyConditionedOnRows(m_Distribution);
     if (currVal < bestVal) {
bestVal = currVal;
m_SplitPoint = (double)i;
for (int j = 0; j < 3; j++) {
  System.arraycopy(m_Distribution[j], 0, bestDist[j], 0, 
		   m_Instances.numClasses());
}
     }
   }

   // No missing values in training data.
   if (numMissing == 0) {
     System.arraycopy(sumCounts, 0, bestDist[2], 0, 
	       m_Instances.numClasses());
   }
  
   m_Distribution = bestDist;
   return bestVal;
 }
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:66,代码来源:DecisionStump.java


示例9: FayyadAndIranisMDL

import weka.core.ContingencyTables; //导入依赖的package包/类
/**
 * Test using Fayyad and Irani's MDL criterion.
 * 
 * @param priorCounts
 * @param bestCounts
 * @param numInstances
 * @param numCutPoints
 * @return true if the splits is acceptable
 */
private boolean FayyadAndIranisMDL(double[] priorCounts,
  double[][] bestCounts, double numInstances, int numCutPoints) {

  double priorEntropy, entropy, gain;
  double entropyLeft, entropyRight, delta;
  int numClassesTotal, numClassesRight, numClassesLeft;

  // Compute entropy before split.
  priorEntropy = ContingencyTables.entropy(priorCounts);

  // Compute entropy after split.
  entropy = ContingencyTables.entropyConditionedOnRows(bestCounts);

  // Compute information gain.
  gain = priorEntropy - entropy;

  // Number of classes occuring in the set
  numClassesTotal = 0;
  for (double priorCount : priorCounts) {
    if (priorCount > 0) {
      numClassesTotal++;
    }
  }

  // Number of classes occuring in the left subset
  numClassesLeft = 0;
  for (int i = 0; i < bestCounts[0].length; i++) {
    if (bestCounts[0][i] > 0) {
      numClassesLeft++;
    }
  }

  // Number of classes occuring in the right subset
  numClassesRight = 0;
  for (int i = 0; i < bestCounts[1].length; i++) {
    if (bestCounts[1][i] > 0) {
      numClassesRight++;
    }
  }

  // Entropy of the left and the right subsets
  entropyLeft = ContingencyTables.entropy(bestCounts[0]);
  entropyRight = ContingencyTables.entropy(bestCounts[1]);

  // Compute terms for MDL formula
  delta = Utils.log2(Math.pow(3, numClassesTotal) - 2)
    - ((numClassesTotal * priorEntropy) - (numClassesRight * entropyRight) - (numClassesLeft * entropyLeft));

  // Check if split is to be accepted
  return (gain > (Utils.log2(numCutPoints) + delta) / numInstances);
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:61,代码来源:Discretize.java


示例10: findSplitNominalNominal

import weka.core.ContingencyTables; //导入依赖的package包/类
/**
  * Finds best split for nominal attribute and nominal class
  * and returns value.
  *
  * @param index attribute index
  * @return value of criterion for the best split
  * @throws Exception if something goes wrong
  */
 private double findSplitNominalNominal(int index) throws Exception {

   double bestVal = Double.MAX_VALUE, currVal;
   double[][] counts = new double[m_Instances.attribute(index).numValues() 
			  + 1][m_Instances.numClasses()];
   double[] sumCounts = new double[m_Instances.numClasses()];
   double[][] bestDist = new double[3][m_Instances.numClasses()];
   int numMissing = 0;

   // Compute counts for all the values
   for (int i = 0; i < m_Instances.numInstances(); i++) {
     Instance inst = m_Instances.instance(i);
     if (inst.isMissing(index)) {
numMissing++;
counts[m_Instances.attribute(index).numValues()]
  [(int)inst.classValue()] += inst.weight();
     } else {
counts[(int)inst.value(index)][(int)inst.classValue()] += inst
  .weight();
     }
   }

   // Compute sum of counts
   for (int i = 0; i < m_Instances.attribute(index).numValues(); i++) {
     for (int j = 0; j < m_Instances.numClasses(); j++) {
sumCounts[j] += counts[i][j];
     }
   }
   
   // Make split counts for each possible split and evaluate
   System.arraycopy(counts[m_Instances.attribute(index).numValues()], 0,
	     m_Distribution[2], 0, m_Instances.numClasses());
   for (int i = 0; i < m_Instances.attribute(index).numValues(); i++) {
     for (int j = 0; j < m_Instances.numClasses(); j++) {
m_Distribution[0][j] = counts[i][j];
m_Distribution[1][j] = sumCounts[j] - counts[i][j];
     }
     currVal = ContingencyTables.entropyConditionedOnRows(m_Distribution);
     if (currVal < bestVal) {
bestVal = currVal;
m_SplitPoint = (double)i;
for (int j = 0; j < 3; j++) {
  System.arraycopy(m_Distribution[j], 0, bestDist[j], 0, 
		   m_Instances.numClasses());
}
     }
   }

   // No missing values in training data.
   if (numMissing == 0) {
     System.arraycopy(sumCounts, 0, bestDist[2], 0, 
	       m_Instances.numClasses());
   }
  
   m_Distribution = bestDist;
   return bestVal;
 }
 
开发者ID:dsibournemouth,项目名称:autoweka,代码行数:66,代码来源:DecisionStump.java


示例11: FayyadAndIranisMDL

import weka.core.ContingencyTables; //导入依赖的package包/类
/**
  * Test using Fayyad and Irani's MDL criterion.
  *
  * @param priorCounts
  * @param bestCounts
  * @param numInstances
  * @param numCutPoints
  * @return true if the splits is acceptable
  */
 private boolean FayyadAndIranisMDL(double[] priorCounts,
			     double[][] bestCounts,
			     double numInstances,
			     int numCutPoints) {

   double priorEntropy, entropy, gain;
   double entropyLeft, entropyRight, delta;
   int numClassesTotal, numClassesRight, numClassesLeft;

   // Compute entropy before split.
   priorEntropy = ContingencyTables.entropy(priorCounts);

   // Compute entropy after split.
   entropy = ContingencyTables.entropyConditionedOnRows(bestCounts);

   // Compute information gain.
   gain = priorEntropy - entropy;

   // Number of classes occuring in the set
   numClassesTotal = 0;
   for (int i = 0; i < priorCounts.length; i++) {
     if (priorCounts[i] > 0) {
numClassesTotal++;
     }
   }

   // Number of classes occuring in the left subset
   numClassesLeft = 0;
   for (int i = 0; i < bestCounts[0].length; i++) {
     if (bestCounts[0][i] > 0) {
numClassesLeft++;
     }
   }

   // Number of classes occuring in the right subset
   numClassesRight = 0;
   for (int i = 0; i < bestCounts[1].length; i++) {
     if (bestCounts[1][i] > 0) {
numClassesRight++;
     }
   }

   // Entropy of the left and the right subsets
   entropyLeft = ContingencyTables.entropy(bestCounts[0]);
   entropyRight = ContingencyTables.entropy(bestCounts[1]);

   // Compute terms for MDL formula
   delta = Utils.log2(Math.pow(3, numClassesTotal) - 2) -
     (((double) numClassesTotal * priorEntropy) -
      (numClassesRight * entropyRight) -
      (numClassesLeft * entropyLeft));

   // Check if split is to be accepted
   return (gain > (Utils.log2(numCutPoints) + delta) / (double)numInstances);
 }
 
开发者ID:dsibournemouth,项目名称:autoweka,代码行数:65,代码来源:Discretize.java


示例12: FayyadAndIranisMDL

import weka.core.ContingencyTables; //导入依赖的package包/类
/** 
  * Test using Fayyad and Irani's MDL criterion.
  * 
  * @param priorCounts
  * @param bestCounts
  * @param numInstances
  * @param numCutPoints
  * @return true if the splits is acceptable
  */
 private boolean FayyadAndIranisMDL(double[] priorCounts,
			     double[][] bestCounts,
			     double numInstances,
			     int numCutPoints) {

   double priorEntropy, entropy, gain; 
   double entropyLeft, entropyRight, delta;
   int numClassesTotal, numClassesRight, numClassesLeft;

   // Compute entropy before split.
   priorEntropy = ContingencyTables.entropy(priorCounts);

   // Compute entropy after split.
   entropy = ContingencyTables.entropyConditionedOnRows(bestCounts);

   // Compute information gain.
   gain = priorEntropy - entropy;

   // Number of classes occuring in the set
   numClassesTotal = 0;
   for (int i = 0; i < priorCounts.length; i++) {
     if (priorCounts[i] > 0) {
numClassesTotal++;
     }
   }

   // Number of classes occuring in the left subset
   numClassesLeft = 0;
   for (int i = 0; i < bestCounts[0].length; i++) {
     if (bestCounts[0][i] > 0) {
numClassesLeft++;
     }
   }

   // Number of classes occuring in the right subset
   numClassesRight = 0;
   for (int i = 0; i < bestCounts[1].length; i++) {
     if (bestCounts[1][i] > 0) {
numClassesRight++;
     }
   }

   // Entropy of the left and the right subsets
   entropyLeft = ContingencyTables.entropy(bestCounts[0]);
   entropyRight = ContingencyTables.entropy(bestCounts[1]);

   // Compute terms for MDL formula
   delta = Utils.log2(Math.pow(3, numClassesTotal) - 2) - 
     (((double) numClassesTotal * priorEntropy) - 
      (numClassesRight * entropyRight) - 
      (numClassesLeft * entropyLeft));

   // Check if split is to be accepted
   return (gain > (Utils.log2(numCutPoints) + delta) / (double)numInstances);
 }
 
开发者ID:williamClanton,项目名称:jbossBA,代码行数:65,代码来源:Discretize.java


示例13: priorVal

import weka.core.ContingencyTables; //导入依赖的package包/类
/**
 * Computes value of splitting criterion before split.
 * 
 * @param dist the distributions
 * @return the splitting criterion
 */
protected double priorVal(double[][] dist) {

  return ContingencyTables.entropyOverColumns(dist);
}
 
开发者ID:seqcode,项目名称:seqcode-core,代码行数:11,代码来源:AttributeRandomTree.java


示例14: gain

import weka.core.ContingencyTables; //导入依赖的package包/类
/**
 * Computes value of splitting criterion after split.
 * 
 * @param dist the distributions
 * @param priorVal the splitting criterion
 * @return the gain after the split
 */
protected double gain(double[][] dist, double priorVal) {

  return priorVal - ContingencyTables.entropyConditionedOnRows(dist);
}
 
开发者ID:seqcode,项目名称:seqcode-core,代码行数:12,代码来源:AttributeRandomTree.java


示例15: priorVal

import weka.core.ContingencyTables; //导入依赖的package包/类
/**
 * Computes value of splitting criterion before split.
 * 
 * @param dist
 * @return the splitting criterion
 */
protected double priorVal(double[][] dist) {

  return ContingencyTables.entropyOverColumns(dist);
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:11,代码来源:REPTree.java


示例16: gain

import weka.core.ContingencyTables; //导入依赖的package包/类
/**
 * Computes value of splitting criterion after split.
 * 
 * @param dist
 * @param priorVal the splitting criterion
 * @return the gain after splitting
 */
protected double gain(double[][] dist, double priorVal) {

  return priorVal - ContingencyTables.entropyConditionedOnRows(dist);
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:12,代码来源:REPTree.java


示例17: priorVal

import weka.core.ContingencyTables; //导入依赖的package包/类
/**
 * Computes value of splitting criterion before split.
 * 
 * @param dist
 *            the distributions
 * @return the splitting criterion
 */
protected double priorVal(double[][] dist) {

  return ContingencyTables.entropyOverColumns(dist);
}
 
开发者ID:triguero,项目名称:Keel3.0,代码行数:12,代码来源:RandomTree.java


示例18: gain

import weka.core.ContingencyTables; //导入依赖的package包/类
/**
 * Computes value of splitting criterion after split.
 * 
 * @param dist
 *            the distributions
 * @param priorVal
 *            the splitting criterion
 * @return the gain after the split
 */
protected double gain(double[][] dist, double priorVal) {

  return priorVal - ContingencyTables.entropyConditionedOnRows(dist);
}
 
开发者ID:triguero,项目名称:Keel3.0,代码行数:14,代码来源:RandomTree.java



注:本文中的weka.core.ContingencyTables类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Java AnalyzeToken类代码示例发布时间:2022-05-23
下一篇:
Java MKMapViewListener类代码示例发布时间:2022-05-23
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap