本文整理汇总了Java中org.apache.spark.sql.streaming.StreamingQuery类的典型用法代码示例。如果您正苦于以下问题:Java StreamingQuery类的具体用法?Java StreamingQuery怎么用?Java StreamingQuery使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
StreamingQuery类属于org.apache.spark.sql.streaming包,在下文中一共展示了StreamingQuery类的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Java代码示例。
示例1: start
import org.apache.spark.sql.streaming.StreamingQuery; //导入依赖的package包/类
private void start() {
log.debug("-> start()");
SparkSession spark = SparkSession.builder().appName("Read lines over a file stream").master("local")
.getOrCreate();
// @formatter:off
Dataset<Row> df = spark
.readStream()
.format("text")
.load(StreamingUtils.getInputDirectory());
// @formatter:on
StreamingQuery query = df.writeStream().outputMode(OutputMode.Update()).format("console").start();
try {
query.awaitTermination();
} catch (StreamingQueryException e) {
log.error("Exception while waiting for query to end {}.", e.getMessage(), e);
}
// In this case everything is a string
df.show();
df.printSchema();
}
开发者ID:jgperrin,项目名称:net.jgp.labs.spark,代码行数:26,代码来源:ReadLinesFromMultipleFileStreams.java
示例2: start
import org.apache.spark.sql.streaming.StreamingQuery; //导入依赖的package包/类
private void start() {
log.debug("-> start()");
SparkSession spark = SparkSession.builder()
.appName("Read lines over a file stream").master("local")
.getOrCreate();
Dataset<Row> df = spark
.readStream()
.format("text")
.load(StreamingUtils.getInputDirectory());
StreamingQuery query = df.writeStream().outputMode(OutputMode.Update())
.format("console").start();
try {
query.awaitTermination();
} catch (StreamingQueryException e) {
log.error("Exception while waiting for query to end {}.", e.getMessage(), e);
}
// Never executed
df.show();
df.printSchema();
}
开发者ID:jgperrin,项目名称:net.jgp.labs.spark,代码行数:26,代码来源:ReadLinesFromFileStream.java
示例3: shutdownGracefully
import org.apache.spark.sql.streaming.StreamingQuery; //导入依赖的package包/类
/**
* Shutdown gracefully a streaming spark job and wait for specific amount of time before exiting.
*
* @param query
* @param checkIntervalMillis whether the query has terminated or not within the checkIntervalMillis milliseconds.
* @throws InterruptedException
* @throws StreamingQueryException
*/
public static void shutdownGracefully(StreamingQuery query, long checkIntervalMillis) throws InterruptedException,
StreamingQueryException {
boolean isStopped = false;
while (!isStopped) {
isStopped = query.awaitTermination(checkIntervalMillis);
if (!isStopped && sparkInfo.isShutdownRequested()) {
LOG.info("Marker file has been removed, will attempt to stop gracefully the spark structured streaming query");
query.stop();
}
}
}
开发者ID:hopshadoop,项目名称:hops-util,代码行数:20,代码来源:HopsUtil.java
示例4: main
import org.apache.spark.sql.streaming.StreamingQuery; //导入依赖的package包/类
public static void main(String args[]) throws StreamingQueryException {
SparkSession spark = SparkSession
.builder()
.appName("JavaStructuredNetworkWordCount")
.master("local")
.config("spark.sql.shuffle.partitions", 8)
.getOrCreate();
// Create DataFrame representing the stream of input lines from connection to localhost:9999
Dataset<Row> lines = spark
.readStream()
.format("socket")
.option("host", "localhost")
.option("port", 9999)
.load();
// Split the lines into words
Dataset<String> words = lines
.as(Encoders.STRING())
.flatMap(
new FlatMapFunction<String, String>() {
@Override
public Iterator<String> call(String x) {
return Arrays.asList(x.split(" ")).iterator();
}
}, Encoders.STRING());
// Generate running word count
Dataset<Row> wordCounts = words.groupBy("value").count();
// Start running the query that prints the running counts to the console
StreamingQuery query = wordCounts.writeStream()
.outputMode("complete")
.format("console")
.start();
query.awaitTermination();
}
开发者ID:knoldus,项目名称:Sparkathon,代码行数:39,代码来源:JavaStructuredNetworkWordCount.java
示例5: start
import org.apache.spark.sql.streaming.StreamingQuery; //导入依赖的package包/类
public StreamingQuery start(final DataStreamWriter<?> writer, final String path) {
Function0<StreamingQuery> runFunction = new AbstractFunction0<StreamingQuery>() {
@Override
public StreamingQuery apply() {
return writer.start(path);
}
};
return harness.startTest(runFunction);
}
开发者ID:elastic,项目名称:elasticsearch-hadoop,代码行数:10,代码来源:JavaStreamingQueryTestHarness.java
示例6: run
import org.apache.spark.sql.streaming.StreamingQuery; //导入依赖的package包/类
public void run(final DataStreamWriter<?> writer, final String path) {
Function0<StreamingQuery> runFunction = new AbstractFunction0<StreamingQuery>() {
@Override
public StreamingQuery apply() {
return writer.start(path);
}
};
harness.runTest(runFunction);
}
开发者ID:elastic,项目名称:elasticsearch-hadoop,代码行数:10,代码来源:JavaStreamingQueryTestHarness.java
示例7: main
import org.apache.spark.sql.streaming.StreamingQuery; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
//Read properties
Properties prop = PropertyFileReader.readPropertyFile();
//SparkSesion
SparkSession spark = SparkSession
.builder()
.appName("VideoStreamProcessor")
.master(prop.getProperty("spark.master.url"))
.getOrCreate();
//directory to save image files with motion detected
final String processedImageDir = prop.getProperty("processed.output.dir");
logger.warn("Output directory for saving processed images is set to "+processedImageDir+". This is configured in processed.output.dir key of property file.");
//create schema for json message
StructType schema = DataTypes.createStructType(new StructField[] {
DataTypes.createStructField("cameraId", DataTypes.StringType, true),
DataTypes.createStructField("timestamp", DataTypes.TimestampType, true),
DataTypes.createStructField("rows", DataTypes.IntegerType, true),
DataTypes.createStructField("cols", DataTypes.IntegerType, true),
DataTypes.createStructField("type", DataTypes.IntegerType, true),
DataTypes.createStructField("data", DataTypes.StringType, true)
});
//Create DataSet from stream messages from kafka
Dataset<VideoEventData> ds = spark
.readStream()
.format("kafka")
.option("kafka.bootstrap.servers", prop.getProperty("kafka.bootstrap.servers"))
.option("subscribe", prop.getProperty("kafka.topic"))
.option("kafka.max.partition.fetch.bytes", prop.getProperty("kafka.max.partition.fetch.bytes"))
.option("kafka.max.poll.records", prop.getProperty("kafka.max.poll.records"))
.load()
.selectExpr("CAST(value AS STRING) as message")
.select(functions.from_json(functions.col("message"),schema).as("json"))
.select("json.*")
.as(Encoders.bean(VideoEventData.class));
//key-value pair of cameraId-VideoEventData
KeyValueGroupedDataset<String, VideoEventData> kvDataset = ds.groupByKey(new MapFunction<VideoEventData, String>() {
@Override
public String call(VideoEventData value) throws Exception {
return value.getCameraId();
}
}, Encoders.STRING());
//process
Dataset<VideoEventData> processedDataset = kvDataset.mapGroupsWithState(new MapGroupsWithStateFunction<String, VideoEventData, VideoEventData,VideoEventData>(){
@Override
public VideoEventData call(String key, Iterator<VideoEventData> values, GroupState<VideoEventData> state) throws Exception {
logger.warn("CameraId="+key+" PartitionId="+TaskContext.getPartitionId());
VideoEventData existing = null;
//check previous state
if (state.exists()) {
existing = state.get();
}
//detect motion
VideoEventData processed = VideoMotionDetector.detectMotion(key,values,processedImageDir,existing);
//update last processed
if(processed != null){
state.update(processed);
}
return processed;
}}, Encoders.bean(VideoEventData.class), Encoders.bean(VideoEventData.class));
//start
StreamingQuery query = processedDataset.writeStream()
.outputMode("update")
.format("console")
.start();
//await
query.awaitTermination();
}
开发者ID:baghelamit,项目名称:video-stream-analytics,代码行数:78,代码来源:VideoStreamProcessor.java
示例8: main
import org.apache.spark.sql.streaming.StreamingQuery; //导入依赖的package包/类
public static void main(String[] args) throws StreamingQueryException {
//set log4j programmatically
LogManager.getLogger("org.apache.spark").setLevel(Level.WARN);
LogManager.getLogger("akka").setLevel(Level.ERROR);
//configure Spark
SparkConf conf = new SparkConf()
.setAppName("kafka-structured")
.setMaster("local[*]");
//initialize spark session
SparkSession sparkSession = SparkSession
.builder()
.config(conf)
.getOrCreate();
//reduce task number
sparkSession.sqlContext().setConf("spark.sql.shuffle.partitions", "3");
//data stream from kafka
Dataset<Row> ds1 = sparkSession
.readStream()
.format("kafka")
.option("kafka.bootstrap.servers", "localhost:9092")
.option("subscribe", "mytopic")
.option("startingOffsets", "earliest")
.load();
//start the streaming query
sparkSession.udf().register("deserialize", (byte[] data) -> {
GenericRecord record = recordInjection.invert(data).get();
return RowFactory.create(record.get("str1").toString(), record.get("str2").toString(), record.get("int1"));
}, DataTypes.createStructType(type.fields()));
ds1.printSchema();
Dataset<Row> ds2 = ds1
.select("value").as(Encoders.BINARY())
.selectExpr("deserialize(value) as rows")
.select("rows.*");
ds2.printSchema();
StreamingQuery query1 = ds2
.groupBy("str1")
.count()
.writeStream()
.queryName("Test query")
.outputMode("complete")
.format("console")
.start();
query1.awaitTermination();
}
开发者ID:Neuw84,项目名称:structured-streaming-avro-demo,代码行数:55,代码来源:StructuredDemo.java
示例9: main
import org.apache.spark.sql.streaming.StreamingQuery; //导入依赖的package包/类
public static void main(String[] args) throws StreamingQueryException {
System.setProperty("hadoop.home.dir", "C:\\softwares\\Winutils");
SparkSession sparkSession = SparkSession.builder().master("local[*]").appName("structured Streaming Example")
.config("spark.sql.warehouse.dir", "file:////C:/Users/sgulati/spark-warehouse").getOrCreate();
Dataset<Row> inStream = sparkSession.readStream().format("socket").option("host", "10.204.136.223")
.option("port", 9999).load();
Dataset<FlightDetails> dsFlightDetails = inStream.as(Encoders.STRING()).map(x -> {
ObjectMapper mapper = new ObjectMapper();
return mapper.readValue(x, FlightDetails.class);
}, Encoders.bean(FlightDetails.class));
dsFlightDetails.createOrReplaceTempView("flight_details");
Dataset<Row> avdFlightDetails = sparkSession.sql("select flightId, avg(temperature) from flight_details group by flightId");
StreamingQuery query = avdFlightDetails.writeStream()
.outputMode("complete")
.format("console")
.start();
query.awaitTermination();
}
开发者ID:PacktPublishing,项目名称:Apache-Spark-2x-for-Java-Developers,代码行数:29,代码来源:StructuredStreamingExample.java
注:本文中的org.apache.spark.sql.streaming.StreamingQuery类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论