• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Java Policy类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Java中burlap.behavior.policy.Policy的典型用法代码示例。如果您正苦于以下问题:Java Policy类的具体用法?Java Policy怎么用?Java Policy使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



Policy类属于burlap.behavior.policy包,在下文中一共展示了Policy类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Java代码示例。

示例1: DeepQLearner

import burlap.behavior.policy.Policy; //导入依赖的package包/类
public DeepQLearner(SADomain domain, double gamma, int replayStartSize, Policy policy, DQN vfa, StateMapping stateMapping) {
    super(domain, gamma, vfa, stateMapping);

    if (replayStartSize > 0) {
        System.out.println(String.format("Starting with random policy for %d frames", replayStartSize));

        this.replayStartSize = replayStartSize;
        this.trainingPolicy = policy;
        setLearningPolicy(new RandomPolicy(domain));
        runningRandomPolicy = true;
    } else {
        setLearningPolicy(policy);

        runningRandomPolicy = false;
    }
}
 
开发者ID:h2r,项目名称:burlap_caffe,代码行数:17,代码来源:DeepQLearner.java


示例2: IPSS

import burlap.behavior.policy.Policy; //导入依赖的package包/类
public static void IPSS(){

		InvertedPendulum ip = new InvertedPendulum();
		ip.physParams.actionNoise = 0.;
		Domain domain = ip.generateDomain();
		RewardFunction rf = new InvertedPendulum.InvertedPendulumRewardFunction(Math.PI/8.);
		TerminalFunction tf = new InvertedPendulum.InvertedPendulumTerminalFunction(Math.PI/8.);
		State initialState = InvertedPendulum.getInitialState(domain);

		SparseSampling ss = new SparseSampling(domain, rf, tf, 1, new SimpleHashableStateFactory(), 10 ,1);
		ss.setForgetPreviousPlanResults(true);
		ss.toggleDebugPrinting(false);
		Policy p = new GreedyQPolicy(ss);

		EpisodeAnalysis ea = p.evaluateBehavior(initialState, rf, tf, 500);
		System.out.println("Num steps: " + ea.maxTimeStep());
		Visualizer v = InvertedPendulumVisualizer.getInvertedPendulumVisualizer();
		new EpisodeSequenceVisualizer(v, domain, Arrays.asList(ea));

	}
 
开发者ID:f-leno,项目名称:DOO-Q_BRACIS2016,代码行数:21,代码来源:ContinuousDomainTutorial.java


示例3: oneStep

import burlap.behavior.policy.Policy; //导入依赖的package包/类
/**
 * Performs one step of execution of the option. This method assumes that the {@link #initiateInState(burlap.oomdp.core.states.State, burlap.oomdp.singleagent.GroundedAction)}
 * method was called previously for the state in which this option was initiated.
 * @param s the state in which a single step of the option is to be taken.
 * @param groundedAction the parameters in which this option was initiated
 * @return the resulting state from a single step of the option being performed.
 */
public State oneStep(State s, GroundedAction groundedAction){
	GroundedAction ga = this.oneStepActionSelection(s, groundedAction);
	State sprime = ga.executeIn(s);
	lastNumSteps++;
	double r = 0.;
	if(keepTrackOfReward){
		r = rf.reward(s, ga, sprime);
		lastCumulativeReward += cumulativeDiscount*r;
		cumulativeDiscount *= discountFactor;
	}
	
	if(shouldRecordResults){
		GroundedAction recordAction = ga;
		if(shouldAnnotateExecution){
			recordAction = new Policy.GroundedAnnotatedAction(groundedAction.toString() + "(" + (lastNumSteps-1) + ")", ga);
		}
		lastOptionExecutionResults.recordTransitionTo(recordAction, sprime, r);
	}
	
	
	
	return sprime;
}
 
开发者ID:f-leno,项目名称:DOO-Q_BRACIS2016,代码行数:31,代码来源:Option.java


示例4: DeterministicTerminationOption

import burlap.behavior.policy.Policy; //导入依赖的package包/类
/**
 * Initializes the option by creating the policy uses some provided option. The valueFunction is called repeatedly on each state in the
 * the list <code>seedStatesForPlanning</code> and then
 * sets this options policy to the valueFunction derived policy that is provided.
 * @param name the name of the option
 * @param init the initiation conditions of the option
 * @param terminationStates the termination states of the option
 * @param seedStatesForPlanning the states that should be used as initial states for the valueFunction
 * @param planner the valueFunction that is used to create the policy for this option
 * @param p the valueFunction derived policy to use after planning from each initial state is performed.
 */
public DeterministicTerminationOption(String name, StateConditionTest init, StateConditionTest terminationStates, List<State> seedStatesForPlanning,
									  Planner planner, SolverDerivedPolicy p){
	
	if(!(p instanceof Policy)){
		throw new RuntimeErrorException(new Error("PlannerDerivedPolicy p is not an instnace of Policy"));
	}
	
	
	this.name = name;
	
	this.initiationTest = init;
	this.terminationStates = terminationStates;
	
	//now construct the policy using the valueFunction from each possible initiation state
	for(State si : seedStatesForPlanning){
		planner.planFromState(si);
	}
	
	p.setSolver(planner);
	this.policy = (Policy)p;
	
}
 
开发者ID:f-leno,项目名称:DOO-Q_BRACIS2016,代码行数:34,代码来源:DeterministicTerminationOption.java


示例5: getActionDistributionForState

import burlap.behavior.policy.Policy; //导入依赖的package包/类
@Override
public List<ActionProb> getActionDistributionForState(State s) {
	
	if(policy == null){
		this.computePolicyFromTree();
	}
	
	GroundedAction ga = policy.get(planner.stateHash(s));
	if(ga == null){
		throw new PolicyUndefinedException();
	}
	
	List <ActionProb> res = new ArrayList<Policy.ActionProb>();
	res.add(new ActionProb(ga, 1.)); //greedy policy so only need to supply the mapped action
	
	return res;
}
 
开发者ID:f-leno,项目名称:DOO-Q_BRACIS2016,代码行数:18,代码来源:UCTTreeWalkPolicy.java


示例6: logPolicyGrad

import burlap.behavior.policy.Policy; //导入依赖的package包/类
/**
 * Computes and returns the gradient of the Boltzmann policy for the given state and action.
 * @param s the state in which the policy is queried
 * @param ga the action for which the policy is queried.
 * @return s the gradient of the Boltzmann policy for the given state and action.
 */
public double [] logPolicyGrad(State s, GroundedAction ga){

	Policy p = new BoltzmannQPolicy((QFunction)this.request.getPlanner(), 1./this.request.getBoltzmannBeta());
	double invActProb = 1./p.getProbOfAction(s, ga);
	double [] gradient = BoltzmannPolicyGradient.computeBoltzmannPolicyGradient(s, ga, (QGradientPlanner)this.request.getPlanner(), this.request.getBoltzmannBeta());
	for(int f = 0; f < gradient.length; f++){
		gradient[f] *= invActProb;
	}
	return gradient;

}
 
开发者ID:f-leno,项目名称:DOO-Q_BRACIS2016,代码行数:18,代码来源:MLIRL.java


示例7: main

import burlap.behavior.policy.Policy; //导入依赖的package包/类
public static void main(String[] args) {

		MountainCar mcGen = new MountainCar();
		Domain domain = mcGen.generateDomain();
		TerminalFunction tf = new MountainCar.ClassicMCTF();
		RewardFunction rf = new GoalBasedRF(tf, 100);

		StateGenerator rStateGen = new MCRandomStateGenerator(domain);
		SARSCollector collector = new SARSCollector.UniformRandomSARSCollector(domain);
		SARSData dataset = collector.collectNInstances(rStateGen, rf, 5000, 20, tf, null);

		ConcatenatedObjectFeatureVectorGenerator fvGen = new ConcatenatedObjectFeatureVectorGenerator(true,
				MountainCar.CLASSAGENT);
		FourierBasis fb = new FourierBasis(fvGen, 4);

		LSPI lspi = new LSPI(domain, 0.99, fb, dataset);
		Policy p = lspi.runPolicyIteration(30, 1e-6);

		Visualizer v = MountainCarVisualizer.getVisualizer(mcGen);
		VisualActionObserver vob = new VisualActionObserver(domain, v);
		vob.initGUI();

		SimulatedEnvironment env = new SimulatedEnvironment(domain, rf, tf,
				MountainCar.getCleanState(domain, mcGen.physParams));
		EnvironmentServer envServ = new EnvironmentServer(env, vob);

		for(int i = 0; i < 100; i++){
			p.evaluateBehavior(envServ);
			envServ.resetEnvironment();
		}

		System.out.println("Finished");

	}
 
开发者ID:f-leno,项目名称:DOO-Q_BRACIS2016,代码行数:35,代码来源:MCVideo.java


示例8: logLikelihoodOfTrajectory

import burlap.behavior.policy.Policy; //导入依赖的package包/类
/**
 * Computes and returns the log-likelihood of the given trajectory under the current reward function parameters and weights it by the given weight.
 * @param ea the trajectory
 * @param weight the weight to assign the trajectory
 * @return the log-likelihood of the given trajectory under the current reward function parameters and weights it by the given weight.
 */
public double logLikelihoodOfTrajectory(EpisodeAnalysis ea, double weight){
	double logLike = 0.;
	Policy p = new BoltzmannQPolicy((QFunction)this.request.getPlanner(), 1./this.request.getBoltzmannBeta());
	for(int i = 0; i < ea.numTimeSteps()-1; i++){
		this.request.getPlanner().planFromState(ea.getState(i));
		double actProb = p.getProbOfAction(ea.getState(i), ea.getAction(i));
		logLike += Math.log(actProb);
	}
	logLike *= weight;
	return logLike;
}
 
开发者ID:f-leno,项目名称:DOO-Q_BRACIS2016,代码行数:18,代码来源:MLIRL.java


示例9: learnPolicy

import burlap.behavior.policy.Policy; //导入依赖的package包/类
@Override
    public Policy learnPolicy(SADomain domain, List<Episode> episodes, int numberOfStates, int numberOfSamplesToUse) {

        //create reward function features to use
        LocationFeatures features = new LocationFeatures(numberOfStates);

        //create a reward function that is linear with respect to those features and has small random
        //parameter values to start
        LinearStateDifferentiableRF rf = new LinearStateDifferentiableRF(features, numberOfStates);
        for (int i = 0; i < rf.numParameters() - 1; i++) {
            rf.setParameter(i, RandomFactory.getMapped(0).nextDouble() * 0.2 - 0.1);
        }
        //set last "dummy state" to large negative number as we do not want to go there
        rf.setParameter(rf.numParameters() - 1, MLIRLWithGuard.minReward);

        //use either DifferentiableVI or DifferentiableSparseSampling for planning. The latter enables receding horizon IRL,
        //but you will probably want to use a fairly large horizon for this kind of reward function.
        HashableStateFactory hashingFactory = new SimpleHashableStateFactory();
//        DifferentiableVI dplanner = new DifferentiableVI(domain, rf, 0.99, beta, hashingFactory, 0.01, 100);
        DifferentiableSparseSampling dplanner = new DifferentiableSparseSampling(domain, rf, 0.99, hashingFactory, (int) Math.sqrt(numberOfStates), numberOfSamplesToUse, beta);

        dplanner.toggleDebugPrinting(doNotPrintDebug);

        //define the IRL problem
        MLIRLRequest request = new MLIRLRequest(domain, dplanner, episodes, rf);
        request.setBoltzmannBeta(beta);

        //run MLIRL on it
        MLIRL irl = new MLIRLWithGuard(request, 0.1, 0.1, steps);
        irl.performIRL();

        return new GreedyQPolicy((QProvider) request.getPlanner());
    }
 
开发者ID:honzaMaly,项目名称:kusanagi,代码行数:34,代码来源:PolicyLearningServiceImpl.java


示例10: getActionDistributionForState

import burlap.behavior.policy.Policy; //导入依赖的package包/类
@Override
public List<ActionProb> getActionDistributionForState(State s) {
	GroundedAction selectedAction = (GroundedAction)this.getAction(s);
	if(selectedAction == null){
		throw new PolicyUndefinedException();
	}
	List <ActionProb> res = new ArrayList<Policy.ActionProb>();
	ActionProb ap = new ActionProb(selectedAction, 1.);
	res.add(ap);
	return res;
}
 
开发者ID:f-leno,项目名称:DOO-Q_BRACIS2016,代码行数:12,代码来源:SDPlannerPolicy.java


示例11: getActionDistributionForState

import burlap.behavior.policy.Policy; //导入依赖的package包/类
@Override
public List<ActionProb> getActionDistributionForState(State s) {
	GroundedAction selectedAction = (GroundedAction)this.getAction(s);
	List <ActionProb> res = new ArrayList<Policy.ActionProb>();
	ActionProb ap = new ActionProb(selectedAction, 1.);
	res.add(ap);
	return res;
}
 
开发者ID:f-leno,项目名称:DOO-Q_BRACIS2016,代码行数:9,代码来源:DDPlannerPolicy.java


示例12: main

import burlap.behavior.policy.Policy; //导入依赖的package包/类
public static void main(String [] args){

		GridWorldDomain gwd = new GridWorldDomain(11, 11);
		gwd.setMapToFourRooms();

		//only go in intended directon 80% of the time
		gwd.setProbSucceedTransitionDynamics(0.8);

		Domain domain = gwd.generateDomain();

		//get initial state with agent in 0,0
		State s = GridWorldDomain.getOneAgentNoLocationState(domain);
		GridWorldDomain.setAgent(s, 0, 0);

		//all transitions return -1
		RewardFunction rf = new UniformCostRF();

		//terminate in top right corner
		TerminalFunction tf = new GridWorldTerminalFunction(10, 10);

		//setup vi with 0.99 discount factor, a value
		//function initialization that initializes all states to value 0, and which will
		//run for 30 iterations over the state space
		VITutorial vi = new VITutorial(domain, rf, tf, 0.99, new SimpleHashableStateFactory(),
				new ValueFunctionInitialization.ConstantValueFunctionInitialization(0.0), 30);

		//run planning from our initial state
		Policy p = vi.planFromState(s);

		//evaluate the policy with one roll out visualize the trajectory
		EpisodeAnalysis ea = p.evaluateBehavior(s, rf, tf);

		Visualizer v = GridWorldVisualizer.getVisualizer(gwd.getMap());
		new EpisodeSequenceVisualizer(v, domain, Arrays.asList(ea));

	}
 
开发者ID:f-leno,项目名称:DOO-Q_BRACIS2016,代码行数:37,代码来源:VITutorial.java


示例13: MCLSPIFB

import burlap.behavior.policy.Policy; //导入依赖的package包/类
public static void MCLSPIFB(){

		MountainCar mcGen = new MountainCar();
		Domain domain = mcGen.generateDomain();
		TerminalFunction tf = new MountainCar.ClassicMCTF();
		RewardFunction rf = new GoalBasedRF(tf, 100);

		StateGenerator rStateGen = new MCRandomStateGenerator(domain);
		SARSCollector collector = new SARSCollector.UniformRandomSARSCollector(domain);
		SARSData dataset = collector.collectNInstances(rStateGen, rf, 5000, 20, tf, null);

		ConcatenatedObjectFeatureVectorGenerator featureVectorGenerator = new ConcatenatedObjectFeatureVectorGenerator(true, MountainCar.CLASSAGENT);
		FourierBasis fb = new FourierBasis(featureVectorGenerator, 4);

		LSPI lspi = new LSPI(domain, 0.99, fb, dataset);
		Policy p = lspi.runPolicyIteration(30, 1e-6);

		Visualizer v = MountainCarVisualizer.getVisualizer(mcGen);
		VisualActionObserver vob = new VisualActionObserver(domain, v);
		vob.initGUI();

		SimulatedEnvironment env = new SimulatedEnvironment(domain, rf, tf, MountainCar.getCleanState(domain, mcGen.physParams));
		EnvironmentServer envServ = new EnvironmentServer(env, vob);

		for(int i = 0; i < 5; i++){
			p.evaluateBehavior(envServ);
			envServ.resetEnvironment();
		}

		System.out.println("Finished");


	}
 
开发者ID:f-leno,项目名称:DOO-Q_BRACIS2016,代码行数:34,代码来源:ContinuousDomainTutorial.java


示例14: getPolicyValue

import burlap.behavior.policy.Policy; //导入依赖的package包/类
/**
 * Returns the state value under a given policy for a state and {@link QFunction}.
 * The value is the expected Q-value under the input policy action distribution. If no actions are permissible in the input state, then zero is returned.
 * @param qSource the {@link QFunction} capable of producing Q-values.
 * @param s the query {@link burlap.oomdp.core.states.State} for which the value should be returned.
 * @param p the policy defining the action distribution.
 * @return the expected Q-value under the input policy action distribution
 */
public static double getPolicyValue(QFunction qSource, State s, Policy p){

	double expectedValue = 0.;
	List <Policy.ActionProb> aps = p.getActionDistributionForState(s);
	if(aps.size() == 0){
		return 0.;
	}
	for(Policy.ActionProb ap : aps){
		double q = qSource.getQ(s, ap.ga).q;
		expectedValue += q * ap.pSelection;
	}
	return expectedValue;
}
 
开发者ID:f-leno,项目名称:DOO-Q_BRACIS2016,代码行数:22,代码来源:QFunction.java


示例15: oneStep

import burlap.behavior.policy.Policy; //导入依赖的package包/类
/**
 * Performs one step of execution of the option in the provided {@link burlap.oomdp.singleagent.environment.Environment}.
 * This method assuems that the {@link #initiateInState(burlap.oomdp.core.states.State, burlap.oomdp.singleagent.GroundedAction)} method
 * was called previously for the state in which this option was initiated.
 * @param env The {@link burlap.oomdp.singleagent.environment.Environment} in which this option is to be applied
 * @param groundedAction the parameters in which this option was initiated
 * @return the {@link burlap.oomdp.singleagent.environment.EnvironmentOutcome} of the one step of interaction.
 */
public EnvironmentOutcome oneStep(Environment env, GroundedAction groundedAction){

	GroundedAction ga = this.oneStepActionSelection(env.getCurrentObservation(), groundedAction);
	EnvironmentOutcome eo = ga.executeIn(env);
	if(eo instanceof EnvironmentOptionOutcome){
		EnvironmentOptionOutcome eoo = (EnvironmentOptionOutcome)eo;
		lastNumSteps += eoo.numSteps;
		lastCumulativeReward += cumulativeDiscount*eoo.r;
		cumulativeDiscount *= eoo.discount;
	}
	else{
		lastNumSteps++;
		lastCumulativeReward += cumulativeDiscount*eo.r;
		cumulativeDiscount *= discountFactor;
	}

	if(shouldRecordResults){
		GroundedAction recordAction = ga;
		if(shouldAnnotateExecution){
			recordAction = new Policy.GroundedAnnotatedAction(groundedAction.toString() + "(" + (lastNumSteps-1) + ")", ga);
		}
		lastOptionExecutionResults.recordTransitionTo(recordAction, eo.op, eo.r);
	}

	return eo;

}
 
开发者ID:f-leno,项目名称:DOO-Q_BRACIS2016,代码行数:36,代码来源:Option.java


示例16: DeterministicTerminationOption

import burlap.behavior.policy.Policy; //导入依赖的package包/类
/**
 * Initializes.
 * @param name the name of the option
 * @param p the option's policy
 * @param init the initiation states of the option
 * @param terminationStates the deterministic termination states of the option.
 */
public DeterministicTerminationOption(String name, Policy p, StateConditionTest init, StateConditionTest terminationStates){
	this.name = name;
	this.policy = p;
	this.initiationTest = init;
	this.terminationStates = terminationStates;
	
}
 
开发者ID:f-leno,项目名称:DOO-Q_BRACIS2016,代码行数:15,代码来源:DeterministicTerminationOption.java


示例17: SimpleTester

import burlap.behavior.policy.Policy; //导入依赖的package包/类
public SimpleTester(Policy policy) {
    this.policy = policy;
}
 
开发者ID:h2r,项目名称:burlap_caffe,代码行数:4,代码来源:SimpleTester.java


示例18: DeepQTester

import burlap.behavior.policy.Policy; //导入依赖的package包/类
public DeepQTester(Policy policy, ExperienceMemory memory, StateMapping stateMapping) {
    this.policy = policy;
    this.memory = memory;
    this.stateMapping = stateMapping;
}
 
开发者ID:h2r,项目名称:burlap_caffe,代码行数:6,代码来源:DeepQTester.java


示例19: modelPlannedPolicy

import burlap.behavior.policy.Policy; //导入依赖的package包/类
@Override
public Policy modelPlannedPolicy() {
	return modelPolicy;
}
 
开发者ID:f-leno,项目名称:DOO-Q_BRACIS2016,代码行数:5,代码来源:VIModelLearningPlanner.java


示例20: MCLSPIRBF

import burlap.behavior.policy.Policy; //导入依赖的package包/类
public static void MCLSPIRBF(){

		MountainCar mcGen = new MountainCar();
		Domain domain = mcGen.generateDomain();
		TerminalFunction tf = new MountainCar.ClassicMCTF();
		RewardFunction rf = new GoalBasedRF(tf, 100);
		State s = MountainCar.getCleanState(domain, mcGen.physParams);

		StateGenerator rStateGen = new MCRandomStateGenerator(domain);
		SARSCollector collector = new SARSCollector.UniformRandomSARSCollector(domain);
		SARSData dataset = collector.collectNInstances(rStateGen, rf, 5000, 20, tf, null);

		RBFFeatureDatabase rbf = new RBFFeatureDatabase(true);
		StateGridder gridder = new StateGridder();
		gridder.gridEntireDomainSpace(domain, 5);
		List<State> griddedStates = gridder.gridInputState(s);
		DistanceMetric metric = new EuclideanDistance(
				new ConcatenatedObjectFeatureVectorGenerator(true, MountainCar.CLASSAGENT));
		for(State g : griddedStates){
			rbf.addRBF(new GaussianRBF(g, metric, .2));
		}

		LSPI lspi = new LSPI(domain, 0.99, rbf, dataset);
		Policy p = lspi.runPolicyIteration(30, 1e-6);

		Visualizer v = MountainCarVisualizer.getVisualizer(mcGen);
		VisualActionObserver vob = new VisualActionObserver(domain, v);
		vob.initGUI();


		SimulatedEnvironment env = new SimulatedEnvironment(domain, rf, tf, s);
		EnvironmentServer envServ = new EnvironmentServer(env, vob);

		for(int i = 0; i < 5; i++){
			p.evaluateBehavior(envServ);
			envServ.resetEnvironment();
		}

		System.out.println("Finished");


	}
 
开发者ID:f-leno,项目名称:DOO-Q_BRACIS2016,代码行数:43,代码来源:ContinuousDomainTutorial.java



注:本文中的burlap.behavior.policy.Policy类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Java MitmManager类代码示例发布时间:2022-05-23
下一篇:
Java Waiter类代码示例发布时间:2022-05-23
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap