• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Java StanfordSegmenter类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Java中de.tudarmstadt.ukp.dkpro.core.stanfordnlp.StanfordSegmenter的典型用法代码示例。如果您正苦于以下问题:Java StanfordSegmenter类的具体用法?Java StanfordSegmenter怎么用?Java StanfordSegmenter使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



StanfordSegmenter类属于de.tudarmstadt.ukp.dkpro.core.stanfordnlp包,在下文中一共展示了StanfordSegmenter类的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Java代码示例。

示例1: getPipeline

import de.tudarmstadt.ukp.dkpro.core.stanfordnlp.StanfordSegmenter; //导入依赖的package包/类
/**
 * Creates a tokenizing pipeline
 *
 * @throws IOException exception
 */
private static AnalysisEngineDescription getPipeline()
        throws IOException
{
    if (pipelineSingleton == null) {
        try {
            pipelineSingleton = AnalysisEngineFactory.createEngineDescription(
                    AnalysisEngineFactory.createEngineDescription(ParagraphSplitter.class,
                            ParagraphSplitter.PARAM_SPLIT_PATTERN,
                            ParagraphSplitter.SINGLE_LINE_BREAKS_PATTERN),
                    AnalysisEngineFactory.createEngineDescription(ArkTweetTokenizerFixed.class),
                    AnalysisEngineFactory.createEngineDescription(StanfordSegmenter.class,
                            StanfordSegmenter.PARAM_WRITE_TOKEN, false,
                            StanfordSegmenter.PARAM_ZONE_TYPES,
                            Paragraph.class.getCanonicalName()));
        }
        catch (ResourceInitializationException e) {
            throw new IOException();
        }
    }

    return pipelineSingleton;
}
 
开发者ID:UKPLab,项目名称:argument-reasoning-comprehension-task,代码行数:28,代码来源:Step0bTextSegmenterA.java


示例2: main

import de.tudarmstadt.ukp.dkpro.core.stanfordnlp.StanfordSegmenter; //导入依赖的package包/类
public static void main(String[] args) throws UIMAException, IOException {

		// read text documents
		CollectionReaderDescription reader = CollectionReaderFactory.createReaderDescription(TextReader.class,
				TextReader.PARAM_SOURCE_LOCATION, textFolder, TextReader.PARAM_PATTERNS, textPattern,
				TextReader.PARAM_LANGUAGE, "en");

		// preprocess documents
		String[] quoteBegin = { "“", "‘" };
		List<String> quoteBeginList = Arrays.asList(quoteBegin);
		String[] quoteEnd = { "”", "’" };
		List<String> quoteEndList = Arrays.asList(quoteEnd);

		AnalysisEngineDescription segmenter = AnalysisEngineFactory.createEngineDescription(StanfordSegmenter.class);
		AnalysisEngineDescription pos = AnalysisEngineFactory.createEngineDescription(StanfordPosTagger.class,
				StanfordPosTagger.PARAM_QUOTE_BEGIN, quoteBeginList, StanfordPosTagger.PARAM_QUOTE_END, quoteEndList);
		AnalysisEngineDescription lemmatizer = AnalysisEngineFactory.createEngineDescription(StanfordLemmatizer.class);
		AnalysisEngineDescription stemmer = AnalysisEngineFactory.createEngineDescription(SnowballStemmer.class,
				SnowballStemmer.PARAM_LOWER_CASE, true);
		AnalysisEngineDescription parser = AnalysisEngineFactory.createEngineDescription(StanfordParser.class,
				StanfordParser.PARAM_MODEL_LOCATION, "lib/englishRNN.ser", StanfordParser.PARAM_MODE,
				DependenciesMode.CC_PROPAGATED, StanfordPosTagger.PARAM_QUOTE_BEGIN, quoteBeginList,
				StanfordPosTagger.PARAM_QUOTE_END, quoteEndList);

		// write annotated data to file
		AnalysisEngineDescription writer = AnalysisEngineFactory.createEngineDescription(BinaryCasWriter.class,
				BinaryCasWriter.PARAM_TARGET_LOCATION, textFolder, BinaryCasWriter.PARAM_STRIP_EXTENSION, false,
				BinaryCasWriter.PARAM_FILENAME_EXTENSION, ".bin6", BinaryCasWriter.PARAM_OVERWRITE, true);

		// print statistics
		AnalysisEngineDescription stat = AnalysisEngineFactory.createEngineDescription(CorpusStatWriter.class);

		// run pipeline
		SimplePipeline.runPipeline(reader, segmenter, pos, lemmatizer, stemmer, parser, writer, stat);
	}
 
开发者ID:UKPLab,项目名称:emnlp2017-cmapsum-corpus,代码行数:36,代码来源:PipelinePreprocessing.java


示例3: main

import de.tudarmstadt.ukp.dkpro.core.stanfordnlp.StanfordSegmenter; //导入依赖的package包/类
public static void main(String[] args) throws UIMAException, IOException {

		Logger.getRootLogger().setLevel(Level.INFO);

		// 0) parameter
		if (args.length > 0)
			textFolder = args[0];

		// 1) read text documents
		CollectionReaderDescription reader = CollectionReaderFactory.createReaderDescription(TextReader.class,
				TextReader.PARAM_SOURCE_LOCATION, textFolder, TextReader.PARAM_PATTERNS, textPattern,
				TextReader.PARAM_LANGUAGE, "en");

		// 2) process documents

		String[] quoteBegin = { "“", "‘" };
		List<String> quoteBeginList = Arrays.asList(quoteBegin);
		String[] quoteEnd = { "”", "’" };
		List<String> quoteEndList = Arrays.asList(quoteEnd);

		// tokenization and sentence splitting
		AnalysisEngineDescription segmenter = AnalysisEngineFactory.createEngineDescription(StanfordSegmenter.class,
				StanfordSegmenter.PARAM_NEWLINE_IS_SENTENCE_BREAK, "ALWAYS");

		// part-of-speech tagging
		AnalysisEngineDescription pos = AnalysisEngineFactory.createEngineDescription(StanfordPosTagger.class,
				StanfordPosTagger.PARAM_QUOTE_BEGIN, quoteBeginList, StanfordPosTagger.PARAM_QUOTE_END, quoteEndList);

		// lemmatizing
		AnalysisEngineDescription lemmatizer = AnalysisEngineFactory.createEngineDescription(StanfordLemmatizer.class,
				StanfordLemmatizer.PARAM_QUOTE_BEGIN, quoteBeginList, StanfordLemmatizer.PARAM_QUOTE_END, quoteEndList);

		// named entity recognition
		AnalysisEngineDescription ner = AnalysisEngineFactory.createEngineDescription(
				StanfordNamedEntityRecognizer.class, StanfordNamedEntityRecognizer.PARAM_QUOTE_BEGIN, quoteBeginList,
				StanfordNamedEntityRecognizer.PARAM_QUOTE_END, quoteEndList);

		// constituency parsing and dependency conversion
		AnalysisEngineDescription parser = AnalysisEngineFactory.createEngineDescription(StanfordParser.class,
				StanfordParser.PARAM_QUOTE_BEGIN, quoteBeginList, StanfordParser.PARAM_QUOTE_END, quoteEndList,
				StanfordParser.PARAM_MODE, DependenciesMode.CC_PROPAGATED);

		// coreference resolution
		AnalysisEngineDescription coref = AnalysisEngineFactory.createEngineDescription();

		// 3) write annotated data to file
		AnalysisEngineDescription writer = AnalysisEngineFactory.createEngineDescription(BinaryCasWriter.class,
				BinaryCasWriter.PARAM_TARGET_LOCATION, textFolder, BinaryCasWriter.PARAM_STRIP_EXTENSION, false,
				BinaryCasWriter.PARAM_FILENAME_EXTENSION, ".bin6", BinaryCasWriter.PARAM_OVERWRITE, true);

		// print statistics
		AnalysisEngineDescription stat = AnalysisEngineFactory.createEngineDescription(CorpusStatWriter.class);

		// 4) run pipeline
		SimplePipeline.runPipeline(reader, segmenter, pos, lemmatizer, ner, parser, coref, writer, stat);
	}
 
开发者ID:UKPLab,项目名称:ijcnlp2017-cmaps,代码行数:57,代码来源:PipelinePreprocessing.java


示例4: process

import de.tudarmstadt.ukp.dkpro.core.stanfordnlp.StanfordSegmenter; //导入依赖的package包/类
private static void process(String inputDir, String xmiOutputDir, String csvOutputDir, String parseDir)
		throws UIMAException, IOException {
	
	CollectionReader reader = createReader(TextReader.class, TextReader.PARAM_SOURCE_LOCATION, inputDir,
			TextReader.PARAM_LANGUAGE, "en", TextReader.PARAM_PATTERNS, new String[] {"*.txt"}); // for WSJ subfolders: { "[+]*/*" }); // suffix .txt?

	// Preprocessing with Stanford CoreNLP components
	AnalysisEngineDescription stTokenizer = AnalysisEngineFactory.createEngineDescription(StanfordSegmenter.class,
			StanfordSegmenter.PARAM_LANGUAGE, "en");

	AnalysisEngineDescription stParser = AnalysisEngineFactory.createEngineDescription(StanfordParser.class,
			StanfordParser.PARAM_LANGUAGE, "en", StanfordParser.PARAM_WRITE_POS, true,
			StanfordParser.PARAM_WRITE_PENN_TREE, true, StanfordParser.PARAM_MAX_TOKENS, 200,
			StanfordParser.PARAM_WRITE_CONSTITUENT, true, StanfordParser.PARAM_WRITE_DEPENDENCY, true,
			StanfordParser.PARAM_MODE, StanfordParser.DependenciesMode.CC_PROPAGATED);

	AnalysisEngineDescription stLemmas = AnalysisEngineFactory.createEngineDescription(StanfordLemmatizer.class);

	// NP feature extraction components: select the noun phrases for which
	// to extract features.
	// See NounPhraseSelectorAnnotator for possible argument choices.
	AnalysisEngineDescription npSelector = AnalysisEngineFactory.createEngineDescription(
			NounPhraseSelectorAnnotator.class, NounPhraseSelectorAnnotator.PARAM_TARGET, "AllNounPhrases");

	// Extract the NP-based features.
	AnalysisEngineDescription npFeatures = AnalysisEngineFactory.createEngineDescription(
			NounPhraseFeaturesAnnotator.class, NounPhraseFeaturesAnnotator.PARAM_COUNTABILITY_PATH,
			countabilityPath, NounPhraseFeaturesAnnotator.PARAM_WORDNET_PATH, wordNetPath);

	// Select the verbs for which to extract features.
	AnalysisEngineDescription verbSelector = AnalysisEngineFactory
			.createEngineDescription(VerbSelectorAnnotator.class);

	// Extract the verb-based features.
	AnalysisEngineDescription verbFeatures = AnalysisEngineFactory.createEngineDescription(
			VerbFeaturesAnnotator.class, VerbFeaturesAnnotator.PARAM_WORDNET_PATH, wordNetPath,
			VerbFeaturesAnnotator.PARAM_TENSE_FILE, "resources/tense/tense.txt");

	// Write standoff CSV file with features.
	AnalysisEngineDescription csvWriter = null;
	if (csvOutputDir != null) {
		csvWriter = AnalysisEngineFactory.createEngineDescription(SyntSemFeaturesCSVWriter.class,
				SyntSemFeaturesCSVWriter.PARAM_OUTPUT_FOLDER, csvOutputDir);
	}
	
	// write out dependency parses (for development)
	AnalysisEngineDescription parseWriter = null;
	if (parseDir != null) {
		parseWriter = AnalysisEngineFactory.createEngineDescription(ParseWriterAnnotator.class,
				ParseWriterAnnotator.PARAM_OUTPUT_FILE, parseDir);
	}

	// writes out XMIs (can then be inspected with UIMA annotation viewer,
	// or used for further processing in an UIMA pipeline)
	AnalysisEngineDescription xmiWriter = null;
	if (xmiOutputDir != null) {
		xmiWriter = AnalysisEngineFactory.createEngineDescription(XmiWriter.class, XmiWriter.PARAM_TARGET_LOCATION,
				xmiOutputDir);
	}

	if (xmiOutputDir != null && csvOutputDir != null) {
		runPipeline(reader, stTokenizer, stParser, stLemmas, npSelector, npFeatures, verbSelector, verbFeatures,
				csvWriter, xmiWriter);
	}
	if (xmiOutputDir != null && csvOutputDir == null) {
		runPipeline(reader, stTokenizer, stParser, stLemmas, npSelector, npFeatures, verbSelector, verbFeatures,
				xmiWriter);
	}

	if (xmiOutputDir == null && csvOutputDir != null) {
		// TODO: proper configuration of pipeline for parseWriter
		runPipeline(reader, stTokenizer, stParser, stLemmas, npSelector, npFeatures, verbSelector, verbFeatures,
				csvWriter, parseWriter);
	}

}
 
开发者ID:annefried,项目名称:sitent,代码行数:77,代码来源:FeatureExtractionPipeline.java


示例5: process

import de.tudarmstadt.ukp.dkpro.core.stanfordnlp.StanfordSegmenter; //导入依赖的package包/类
private static void process(String inputDir, String xmiOutputDir, String csvOutputDir)
		throws UIMAException, IOException {
	CollectionReader reader = createReader(TextReader.class, TextReader.PARAM_SOURCE_LOCATION, inputDir,
			TextReader.PARAM_LANGUAGE, "en", TextReader.PARAM_PATTERNS, new String[] { "[+]*.txt" });

	// Preprocessing with Stanford CoreNLP components
	AnalysisEngineDescription stTokenizer = AnalysisEngineFactory.createEngineDescription(StanfordSegmenter.class,
			StanfordSegmenter.PARAM_LANGUAGE, "en");

	AnalysisEngineDescription stParser = AnalysisEngineFactory.createEngineDescription(StanfordParser.class,
			StanfordParser.PARAM_LANGUAGE, "en", StanfordParser.PARAM_WRITE_POS, true,
			StanfordParser.PARAM_WRITE_PENN_TREE, true, StanfordParser.PARAM_MAX_TOKENS, 200,
			StanfordParser.PARAM_WRITE_CONSTITUENT, true, StanfordParser.PARAM_WRITE_DEPENDENCY, true,
			StanfordParser.PARAM_MODE, StanfordParser.DependenciesMode.CC_PROPAGATED);

	AnalysisEngineDescription stLemmas = AnalysisEngineFactory.createEngineDescription(StanfordLemmatizer.class);

	// NP feature extraction components: select the noun phrases for which
	// to extract features.
	// See NounPhraseSelectorAnnotator for possible argument choices.
	AnalysisEngineDescription npSelector = AnalysisEngineFactory.createEngineDescription(
			NounPhraseSelectorAnnotator.class, NounPhraseSelectorAnnotator.PARAM_TARGET, "AllNounPhrases");

	// Extract the NP-based features.
	AnalysisEngineDescription npFeatures = AnalysisEngineFactory.createEngineDescription(
			NounPhraseFeaturesAnnotator.class, NounPhraseFeaturesAnnotator.PARAM_COUNTABILITY_PATH,
			countabilityPath, NounPhraseFeaturesAnnotator.PARAM_WORDNET_PATH, wordNetPath);

	// Select the verbs for which to extract features.
	AnalysisEngineDescription verbSelector = AnalysisEngineFactory
			.createEngineDescription(VerbSelectorAnnotator.class);

	// Extract the verb-based features.
	AnalysisEngineDescription verbFeatures = AnalysisEngineFactory.createEngineDescription(
			VerbFeaturesAnnotator.class, VerbFeaturesAnnotator.PARAM_WORDNET_PATH, wordNetPath,
			VerbFeaturesAnnotator.PARAM_TENSE_FILE, "resources/tense/tense.txt");

	// Write standoff CSV file with features.
	AnalysisEngineDescription csvWriter = null;
	if (csvOutputDir != null) {
		csvWriter = AnalysisEngineFactory.createEngineDescription(SyntSemFeaturesCSVWriter.class,
				SyntSemFeaturesCSVWriter.PARAM_OUTPUT_FOLDER, csvOutputDir);
	}

	// writes out XMIs (can then be inspected with UIMA annotation viewer,
	// or used for further processing in an UIMA pipeline)
	AnalysisEngineDescription xmiWriter = null;
	if (xmiOutputDir != null) {
		xmiWriter = AnalysisEngineFactory.createEngineDescription(XmiWriter.class, XmiWriter.PARAM_TARGET_LOCATION,
				xmiOutputDir);
	}

	if (xmiOutputDir != null && csvOutputDir != null) {
		runPipeline(reader, stTokenizer, stParser, stLemmas, npSelector, npFeatures, verbSelector, verbFeatures,
				csvWriter, xmiWriter);
	}
	if (xmiOutputDir != null && csvOutputDir == null) {
		runPipeline(reader, stTokenizer, stParser, stLemmas, npSelector, npFeatures, verbSelector, verbFeatures,
				xmiWriter);
	}

	if (xmiOutputDir == null && csvOutputDir != null) {
		runPipeline(reader, stTokenizer, stParser, stLemmas, npSelector, npFeatures, verbSelector, verbFeatures,
				csvWriter);
	}

}
 
开发者ID:annefried,项目名称:syntSemFeatures,代码行数:68,代码来源:FeatureExtractionPipeline.java


示例6: main

import de.tudarmstadt.ukp.dkpro.core.stanfordnlp.StanfordSegmenter; //导入依赖的package包/类
public static void main(String[] args)
    throws UIMAException, IOException
{

    CollectionReader stanfordReade = createReader(StanfordReader.class,
            StanfordReader.PARAM_DIRECTORY_NAME, "C://Users//skohail//Desktop//PhD//complete Data//reviewsfile");

    AnalysisEngine stanfordannotator = createEngine(StanfordSegmenter.class, StanfordSegmenter.PARAM_CREATE_SENTENCES,false);

    AnalysisEngine stanfordWriter = createEngine(StanfordOutWriter.class);

    SimplePipeline.runPipeline(stanfordReade, stanfordannotator, stanfordWriter);
}
 
开发者ID:tudarmstadt-lt,项目名称:sentiment,代码行数:14,代码来源:StanfordePipline.java



注:本文中的de.tudarmstadt.ukp.dkpro.core.stanfordnlp.StanfordSegmenter类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Java QName类代码示例发布时间:2022-05-23
下一篇:
Java DataTransferMessages类代码示例发布时间:2022-05-23
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap