• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Java MnistDataFetcher类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Java中org.deeplearning4j.datasets.fetchers.MnistDataFetcher的典型用法代码示例。如果您正苦于以下问题:Java MnistDataFetcher类的具体用法?Java MnistDataFetcher怎么用?Java MnistDataFetcher使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



MnistDataFetcher类属于org.deeplearning4j.datasets.fetchers包,在下文中一共展示了MnistDataFetcher类的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Java代码示例。

示例1: testAutoEncoder

import org.deeplearning4j.datasets.fetchers.MnistDataFetcher; //导入依赖的package包/类
@Test
public void testAutoEncoder() throws Exception {

    MnistDataFetcher fetcher = new MnistDataFetcher(true);
    NeuralNetConfiguration conf = new NeuralNetConfiguration.Builder()
                    .optimizationAlgo(OptimizationAlgorithm.LINE_GRADIENT_DESCENT).updater(new Sgd(0.1))
                    .layer(new org.deeplearning4j.nn.conf.layers.AutoEncoder.Builder().nIn(784).nOut(600)
                                    .corruptionLevel(0.6)
                                    .lossFunction(LossFunctions.LossFunction.RECONSTRUCTION_CROSSENTROPY).build())
                    .build();


    fetcher.fetch(100);
    DataSet d2 = fetcher.next();

    INDArray input = d2.getFeatureMatrix();
    int numParams = conf.getLayer().initializer().numParams(conf);
    INDArray params = Nd4j.create(1, numParams);
    AutoEncoder da = (AutoEncoder) conf.getLayer().instantiate(conf,
                    Arrays.<IterationListener>asList(new ScoreIterationListener(1)), 0, params, true);
    assertEquals(da.params(), da.params());
    assertEquals(471784, da.params().length());
    da.setParams(da.params());
    da.setBackpropGradientsViewArray(Nd4j.create(1, params.length()));
    da.fit(input);
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:27,代码来源:AutoEncoderTest.java


示例2: testBackProp

import org.deeplearning4j.datasets.fetchers.MnistDataFetcher; //导入依赖的package包/类
@Test
public void testBackProp() throws Exception {
    MnistDataFetcher fetcher = new MnistDataFetcher(true);
    //        LayerFactory layerFactory = LayerFactories.getFactory(new org.deeplearning4j.nn.conf.layers.AutoEncoder());
    NeuralNetConfiguration conf = new NeuralNetConfiguration.Builder()
                    .optimizationAlgo(OptimizationAlgorithm.LINE_GRADIENT_DESCENT)
                    .updater(new Sgd(0.1))
                    .layer(new org.deeplearning4j.nn.conf.layers.AutoEncoder.Builder().nIn(784).nOut(600)
                                    .corruptionLevel(0.6)
                                    .lossFunction(LossFunctions.LossFunction.RECONSTRUCTION_CROSSENTROPY).build())
                    .build();

    fetcher.fetch(100);
    DataSet d2 = fetcher.next();

    INDArray input = d2.getFeatureMatrix();
    int numParams = conf.getLayer().initializer().numParams(conf);
    INDArray params = Nd4j.create(1, numParams);
    AutoEncoder da = (AutoEncoder) conf.getLayer().instantiate(conf, null, 0, params, true);
    Gradient g = new DefaultGradient();
    g.gradientForVariable().put(DefaultParamInitializer.WEIGHT_KEY, da.decode(da.activate(input)).sub(input));
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:23,代码来源:AutoEncoderTest.java


示例3: main

import org.deeplearning4j.datasets.fetchers.MnistDataFetcher; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
    final int numRows = 28;
    final int numColumns = 28;
    int seed = 123;
    int numSamples = MnistDataFetcher.NUM_EXAMPLES;
    int batchSize = 1000;
    int iterations = 1;
    int listenerFreq = iterations/5;

    log.info("Load data....");
    DataSetIterator iter = new MnistDataSetIterator(batchSize,numSamples,true);

    log.info("Build model....");
    MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
            .seed(seed)
            .iterations(iterations)
            .optimizationAlgo(OptimizationAlgorithm.LINE_GRADIENT_DESCENT)
            .list(8)
            .layer(0, new RBM.Builder().nIn(numRows * numColumns).nOut(2000).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
            .layer(1, new RBM.Builder().nIn(2000).nOut(1000).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
            .layer(2, new RBM.Builder().nIn(1000).nOut(500).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
            .layer(3, new RBM.Builder().nIn(500).nOut(30).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
            .layer(4, new RBM.Builder().nIn(30).nOut(500).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build()) 
            .layer(5, new RBM.Builder().nIn(500).nOut(1000).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
            .layer(6, new RBM.Builder().nIn(1000).nOut(2000).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
            .layer(7, new OutputLayer.Builder(LossFunctions.LossFunction.MSE).activation(Activation.SIGMOID).nIn(2000).nOut(numRows*numColumns).build())
            .pretrain(true).backprop(true)
            .build();

    MultiLayerNetwork model = new MultiLayerNetwork(conf);
    model.init();

    model.setListeners(new ScoreIterationListener(listenerFreq));

    log.info("Train model....");
    while(iter.hasNext()) {
        DataSet next = iter.next();
        model.fit(new DataSet(next.getFeatureMatrix(),next.getFeatureMatrix()));
    }
}
 
开发者ID:PacktPublishing,项目名称:Deep-Learning-with-Hadoop,代码行数:41,代码来源:DeepAutoEncoder.java


示例4: mnist

import org.deeplearning4j.datasets.fetchers.MnistDataFetcher; //导入依赖的package包/类
public static DataSet mnist(int num) {
    try {
        MnistDataFetcher fetcher = new MnistDataFetcher();
        fetcher.fetch(num);
        return fetcher.next();
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:10,代码来源:DataSets.java


示例5: DeepAutoEncoderExample

import org.deeplearning4j.datasets.fetchers.MnistDataFetcher; //导入依赖的package包/类
public DeepAutoEncoderExample() {
    try {
        int seed = 123;
        int numberOfIterations = 1;
        iterator = new MnistDataSetIterator(1000, MnistDataFetcher.NUM_EXAMPLES, true);
        
        MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
                .seed(seed)
                .iterations(numberOfIterations)
                .optimizationAlgo(OptimizationAlgorithm.LINE_GRADIENT_DESCENT)
                .list()
                .layer(0, new RBM.Builder().nIn(numberOfRows * numberOfColumns)
                        .nOut(1000)
                        .lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
                .layer(1, new RBM.Builder().nIn(1000).nOut(500)
                        .lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
                .layer(2, new RBM.Builder().nIn(500).nOut(250)
                        .lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
                .layer(3, new RBM.Builder().nIn(250).nOut(100)
                        .lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
                .layer(4, new RBM.Builder().nIn(100).nOut(30)
                        .lossFunction(LossFunctions.LossFunction.RMSE_XENT).build()) //encoding stops
                .layer(5, new RBM.Builder().nIn(30).nOut(100)
                        .lossFunction(LossFunctions.LossFunction.RMSE_XENT).build()) //decoding starts
                .layer(6, new RBM.Builder().nIn(100).nOut(250)
                        .lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
                .layer(7, new RBM.Builder().nIn(250).nOut(500)
                        .lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
                .layer(8, new RBM.Builder().nIn(500).nOut(1000)
                        .lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
                .layer(9, new OutputLayer.Builder(
                                LossFunctions.LossFunction.RMSE_XENT).nIn(1000)
                        .nOut(numberOfRows * numberOfColumns).build())
                .pretrain(true).backprop(true)
                .build();

        model = new MultiLayerNetwork(conf);
        model.init();

        model.setListeners(Collections.singletonList(
                (IterationListener) new ScoreIterationListener()));

        while (iterator.hasNext()) {
            DataSet dataSet = iterator.next();
            model.fit(new DataSet(dataSet.getFeatureMatrix(),
                    dataSet.getFeatureMatrix()));
        }

        modelFile = new File("savedModel");
        ModelSerializer.writeModel(model, modelFile, true);
    } catch (IOException ex) {
        ex.printStackTrace();
    }
}
 
开发者ID:PacktPublishing,项目名称:Machine-Learning-End-to-Endguide-for-Java-developers,代码行数:55,代码来源:DeepAutoEncoderExample.java


示例6: main

import org.deeplearning4j.datasets.fetchers.MnistDataFetcher; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
    final int numRows = 28;
    final int numColumns = 28;
    int seed = 123;
    int numSamples = MnistDataFetcher.NUM_EXAMPLES;
    int batchSize = 1000;
    int iterations = 1;
    int listenerFreq = iterations/5;

    log.info("Load data....");
    DataSetIterator iter = new MnistDataSetIterator(batchSize,numSamples,true);

    log.info("Build model....");
    MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
            .seed(seed)
            .iterations(iterations)
            .optimizationAlgo(OptimizationAlgorithm.LINE_GRADIENT_DESCENT)
            .list(10)
            .layer(0, new RBM.Builder().nIn(numRows * numColumns).nOut(1000).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
            .layer(1, new RBM.Builder().nIn(1000).nOut(500).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
            .layer(2, new RBM.Builder().nIn(500).nOut(250).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
            .layer(3, new RBM.Builder().nIn(250).nOut(100).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
            .layer(4, new RBM.Builder().nIn(100).nOut(30).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build()) //encoding stops
            .layer(5, new RBM.Builder().nIn(30).nOut(100).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build()) //decoding starts
            .layer(6, new RBM.Builder().nIn(100).nOut(250).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
            .layer(7, new RBM.Builder().nIn(250).nOut(500).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
            .layer(8, new RBM.Builder().nIn(500).nOut(1000).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
            .layer(9, new OutputLayer.Builder(LossFunctions.LossFunction.RMSE_XENT).nIn(1000).nOut(numRows*numColumns).build())
            .pretrain(true).backprop(true)
            .build();

    MultiLayerNetwork model = new MultiLayerNetwork(conf);
    model.init();

    model.setListeners(Arrays.asList((IterationListener) new ScoreIterationListener(listenerFreq)));

    log.info("Train model....");
    while(iter.hasNext()) {
        DataSet next = iter.next();
        model.fit(new DataSet(next.getFeatureMatrix(),next.getFeatureMatrix()));
    }
}
 
开发者ID:PacktPublishing,项目名称:Java-Data-Science-Cookbook,代码行数:43,代码来源:DeepAutoEncoderExample.java


示例7: main

import org.deeplearning4j.datasets.fetchers.MnistDataFetcher; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
    final int numRows = 28;
    final int numColumns = 28;
    int seed = 123;
    int numSamples = MnistDataFetcher.NUM_EXAMPLES;
    int batchSize = 1000;
    int iterations = 1;
    int listenerFreq = iterations/5;

    log.info("Load data....");
    DataSetIterator iter = new MnistDataSetIterator(batchSize,numSamples,true);

    log.info("Build model....");
    MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
            .seed(seed)
            .iterations(iterations)
            .optimizationAlgo(OptimizationAlgorithm.LINE_GRADIENT_DESCENT)
            .list()
            .layer(0, new RBM.Builder().nIn(numRows * numColumns).nOut(1000).lossFunction(LossFunctions.LossFunction.KL_DIVERGENCE).build())
            .layer(1, new RBM.Builder().nIn(1000).nOut(500).lossFunction(LossFunctions.LossFunction.KL_DIVERGENCE).build())
            .layer(2, new RBM.Builder().nIn(500).nOut(250).lossFunction(LossFunctions.LossFunction.KL_DIVERGENCE).build())
            .layer(3, new RBM.Builder().nIn(250).nOut(100).lossFunction(LossFunctions.LossFunction.KL_DIVERGENCE).build())
            .layer(4, new RBM.Builder().nIn(100).nOut(30).lossFunction(LossFunctions.LossFunction.KL_DIVERGENCE).build())  
            .layer(5, new RBM.Builder().nIn(30).nOut(100).lossFunction(LossFunctions.LossFunction.KL_DIVERGENCE).build())  
            .layer(6, new RBM.Builder().nIn(100).nOut(250).lossFunction(LossFunctions.LossFunction.KL_DIVERGENCE).build())
            .layer(7, new RBM.Builder().nIn(250).nOut(500).lossFunction(LossFunctions.LossFunction.KL_DIVERGENCE).build())
            .layer(8, new RBM.Builder().nIn(500).nOut(1000).lossFunction(LossFunctions.LossFunction.KL_DIVERGENCE).build())
            .layer(9, new OutputLayer.Builder(LossFunctions.LossFunction.MSE).activation(Activation.SIGMOID).nIn(1000).nOut(numRows*numColumns).build())
            .pretrain(true).backprop(true)
            .build();

    MultiLayerNetwork model = new MultiLayerNetwork(conf);
    model.init();

    model.setListeners(new ScoreIterationListener(listenerFreq));

    log.info("Train model....");
    while(iter.hasNext()) {
        DataSet next = iter.next();
        model.fit(new DataSet(next.getFeatureMatrix(),next.getFeatureMatrix()));
    }


}
 
开发者ID:PacktPublishing,项目名称:Deep-Learning-with-Hadoop,代码行数:45,代码来源:DBN.java


示例8: MnistManager

import org.deeplearning4j.datasets.fetchers.MnistDataFetcher; //导入依赖的package包/类
/**
 * Constructs an instance managing the two given data files. Supports
 * <code>NULL</code> value for one of the arguments in case reading only one
 * of the files (images and labels) is required.
 *
 * @param imagesFile
 *            Can be <code>NULL</code>. In that case all future operations
 *            using that file will fail.
 * @param labelsFile
 *            Can be <code>NULL</code>. In that case all future operations
 *            using that file will fail.
 * @throws IOException
 */
public MnistManager(String imagesFile, String labelsFile, boolean train) throws IOException {
    this(imagesFile, labelsFile, train ? MnistDataFetcher.NUM_EXAMPLES : MnistDataFetcher.NUM_EXAMPLES_TEST);
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:17,代码来源:MnistManager.java


示例9: MnistDataSetIterator

import org.deeplearning4j.datasets.fetchers.MnistDataFetcher; //导入依赖的package包/类
/** Constructor to get the full MNIST data set (either test or train sets) without binarization (i.e., just normalization
 * into range of 0 to 1), with shuffling based on a random seed.
 * @param batchSize
 * @param train
 * @throws IOException
 */
public MnistDataSetIterator(int batchSize, boolean train, int seed) throws IOException {
    this(batchSize, (train ? MnistDataFetcher.NUM_EXAMPLES : MnistDataFetcher.NUM_EXAMPLES_TEST), false, train,
                    true, seed);
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:11,代码来源:MnistDataSetIterator.java


示例10: RawMnistDataSetIterator

import org.deeplearning4j.datasets.fetchers.MnistDataFetcher; //导入依赖的package包/类
public RawMnistDataSetIterator(int batch, int numExamples) throws IOException {
    super(batch, numExamples, new MnistDataFetcher(false));

}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:5,代码来源:RawMnistDataSetIterator.java



注:本文中的org.deeplearning4j.datasets.fetchers.MnistDataFetcher类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Java UpdateRequestHandler类代码示例发布时间:2022-05-23
下一篇:
Java OverrideOnDemand类代码示例发布时间:2022-05-23
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap