本文整理汇总了Scala中org.joda.time.Instant类的典型用法代码示例。如果您正苦于以下问题:Scala Instant类的具体用法?Scala Instant怎么用?Scala Instant使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Instant类的17个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Scala代码示例。
示例1: JavaPointTime
//设置package包名称以及导入依赖的类
package com.pygmalios.reactiveinflux.jawa
import java.util.Date
import com.pygmalios.{reactiveinflux => sc}
import org.joda.time.{DateTime, Instant}
class JavaPointTime(val underlying: sc.PointTime) extends PointTime {
def this(seconds: Long, nano: Int) {
this(sc.PointTime.ofEpochSecond(seconds, nano))
}
def this(dateTime: DateTime) {
this(sc.PointTime(dateTime))
}
def this(instant: Instant) {
this(sc.PointTime(instant))
}
def this(date: Date) {
this(sc.PointTime(date))
}
override def getSeconds: Long = underlying.seconds
override def getNano: Int = underlying.nanos
override def toString: String = underlying.toString
override def hashCode(): Int = underlying.hashCode()
override def equals(obj: scala.Any): Boolean = underlying.equals(obj)
}
开发者ID:pygmalios,项目名称:reactiveinflux,代码行数:32,代码来源:JavaPointTime.scala
示例2: JavaPoint
//设置package包名称以及导入依赖的类
package com.pygmalios.reactiveinflux.jawa
import java.util
import java.util.Date
import com.pygmalios.reactiveinflux._
import com.pygmalios.reactiveinflux.jawa.Conversions._
import com.pygmalios.{reactiveinflux => sc}
import org.joda.time.{DateTime, Instant}
class JavaPoint(val underlyingPoint: sc.Point) extends JavaPointNoTime(underlyingPoint) with Point {
def this(time: PointTime,
measurement: String,
tags: util.Map[String, String],
fields: util.Map[String, Object]) {
this(sc.Point(sc.PointTime.ofEpochSecond(time.getSeconds, time.getNano), measurement, tagsToScala(tags), fieldsToScala(fields)))
}
def this(dateTime: DateTime,
measurement: String,
tags: util.Map[String, String],
fields: util.Map[String, Object]) {
this(sc.Point(sc.PointTime(dateTime), measurement, tagsToScala(tags), fieldsToScala(fields)))
}
def this(instant: Instant,
measurement: String,
tags: util.Map[String, String],
fields: util.Map[String, Object]) {
this(sc.Point(sc.PointTime(instant), measurement, tagsToScala(tags), fieldsToScala(fields)))
}
def this(date: Date,
measurement: String,
tags: util.Map[String, String],
fields: util.Map[String, Object]) {
this(sc.Point(sc.PointTime(date), measurement, tagsToScala(tags), fieldsToScala(fields)))
}
override lazy val getTime: PointTime = new JavaPointTime(underlyingPoint.time)
}
开发者ID:pygmalios,项目名称:reactiveinflux,代码行数:42,代码来源:JavaPoint.scala
示例3: TensorFlowTypeSpec
//设置package包名称以及导入依赖的类
package shapeless.datatype.tensorflow
import java.net.URI
import org.joda.time.Instant
import org.scalacheck.Prop.{all, forAll}
import org.scalacheck.ScalacheckShapeless._
import org.scalacheck._
import org.tensorflow.example.{Feature, Int64List}
import shapeless._
import shapeless.datatype.record._
import scala.collection.JavaConverters._
object TensorFlowTypeSpec extends Properties("TensorFlowType") {
import shapeless.datatype.test.Records._
import shapeless.datatype.test.SerializableUtils._
implicit def compareByteArrays(x: Array[Byte], y: Array[Byte]) = java.util.Arrays.equals(x, y)
implicit def compareIntArrays(x: Array[Int], y: Array[Int]) = java.util.Arrays.equals(x, y)
implicit def compareDouble(x: Double, y: Double) = x.toFloat == y.toFloat
def roundTrip[A, L <: HList](m: A)
(implicit
gen: LabelledGeneric.Aux[A, L],
fromL: FromFeatures[L],
toL: ToFeatures[L],
mr: MatchRecord[L]): Prop = {
val t = ensureSerializable(TensorFlowType[A])
val rm = RecordMatcher[A]
all(
t.fromExample(t.toExample(m)).exists(rm(_, m)),
t.fromExampleBuilder(t.toExampleBuilder(m)).exists(rm(_, m)))
}
implicit val timestampTensorFlowMappableType = TensorFlowType.at[Instant](
TensorFlowType.toLongs(_).map(new Instant(_)),
xs => TensorFlowType.fromLongs(xs.map(_.getMillis)))
property("required") = forAll { m: Required => roundTrip(m) }
property("optional") = forAll { m: Optional => roundTrip(m) }
property("repeated") = forAll { m: Repeated => roundTrip(m) }
property("mixed") = forAll { m: Mixed => roundTrip(m) }
property("seqs") = forAll { m: Seqs => roundTrip(m) }
implicit val uriTensorFlowType = TensorFlowType.at[URI](
TensorFlowType.toStrings(_).map(URI.create),
xs => TensorFlowType.fromStrings(xs.map(_.toString)))
property("custom") = forAll { m: Custom => roundTrip(m)}
}
开发者ID:nevillelyh,项目名称:shapeless-datatype,代码行数:52,代码来源:TensorFlowTypeSpec.scala
示例4: Records
//设置package包名称以及导入依赖的类
package shapeless.datatype.test
import java.net.URI
import com.google.protobuf.ByteString
import org.joda.time.Instant
import org.scalacheck._
object Records {
case class Required(booleanField: Boolean,
intField: Int, longField: Long, floatField: Float, doubleField: Double,
stringField: String,
byteStringField: ByteString, byteArrayField: Array[Byte],
timestampField: Instant)
case class Optional(booleanField: Option[Boolean],
intField: Option[Int], longField: Option[Long],
floatField: Option[Float], doubleField: Option[Double],
stringField: Option[String],
byteStringField: Option[ByteString], byteArrayField: Option[Array[Byte]],
timestampField: Option[Instant])
case class Repeated(booleanField: List[Boolean],
intField: List[Int], longField: List[Long],
floatField: List[Float], doubleField: List[Double],
stringField: List[String],
byteStringField: List[ByteString], byteArrayField: List[Array[Byte]],
timestampField: List[Instant])
case class Mixed(longField: Long, doubleField: Double, stringField: String,
longFieldO: Option[Long], doubleFieldO: Option[Double], stringFieldO: Option[String],
longFieldR: List[Long], doubleFieldR: List[Double], stringFieldR: List[String])
case class Nested(longField: Long, longFieldO: Option[Long], longFieldR: List[Long],
mixedField: Mixed, mixedFieldO: Option[Mixed], mixedFieldR: List[Mixed])
case class Seqs(array: Array[Int], list: List[Int], vector: Vector[Int])
case class Custom(uriField: URI, uriFieldO: Option[URI], uriFieldR: List[URI])
implicit val arbByteString = Arbitrary(Gen.alphaStr.map(ByteString.copyFromUtf8))
implicit val arbInstant = Arbitrary(Gen.chooseNum(0, Int.MaxValue).map(new Instant(_)))
implicit val arbUri = Arbitrary(Gen.alphaStr.map(URI.create))
}
开发者ID:nevillelyh,项目名称:shapeless-datatype,代码行数:39,代码来源:Records.scala
示例5: Indicators
//设置package包名称以及导入依赖的类
package org.nikosoft.oanda.instruments
import org.joda.time.Instant
import org.nikosoft.oanda.instruments.Model.CandleStick
import org.scalatest.{FunSpec, Matchers}
class Indicators$Test extends FunSpec with Matchers {
describe("atr") {
it("should calculate Average True Range when there is no previous value provided") {
val inputHigh: Seq[BigDecimal] = Seq(50.19, 49.88, 49.66, 50.12, 50.19, 49.92, 49.35, 49.20, 49.05, 48.82, 48.87, 48.90, 48.72, 48.70)
val inputLow: Seq[BigDecimal] = Seq(49.73, 49.43, 48.90, 49.20, 49.87, 49.50, 48.86, 48.94, 48.64, 48.24, 48.37, 48.39, 48.14, 47.79)
val inputClose: Seq[BigDecimal] = Seq(50.03, 49.75, 49.50, 49.53, 50.13, 49.91, 49.32, 49.07, 49.03, 48.74, 48.63, 48.75, 48.61, 48.16)
val input = (inputHigh, inputLow, inputClose).zipped.map(CandleStick(Instant.now, 0, _, _, _, 0, complete = true))
val actual = Indicators.atr(14, input, None)
val expected: BigDecimal = 0.56
actual.fold(fail("should not fail here")) { actualValue =>
actualValue shouldBe (expected +- 0.01)
}
}
it("should calculate Average True Range when previous value provided") {
val inputCandle = Seq(
CandleStick(Instant.now(), 0, 50.36, 49.26, 50.31, 0, complete = true),
CandleStick(Instant.now(), 0, 50.19, 49.73, 50.03, 0, complete = true))
val previousAtr: BigDecimal = 0.56
val actual = Indicators.atr(14, inputCandle, Some(previousAtr))
val expected: BigDecimal = 0.59
actual.fold(fail("should not fail here")) { actualValue =>
actualValue shouldBe (expected +- 0.01)
}
}
it("should return None if no previous value provided and amount of candles is less than period") {
val inputCandle = Seq(
CandleStick(Instant.now(), 0, 50.36, 49.26, 50.31, 0, complete = true),
CandleStick(Instant.now(), 0, 50.19, 49.73, 50.03, 0, complete = true),
CandleStick(Instant.now(), 0, 50.19, 49.73, 50.03, 0, complete = true),
CandleStick(Instant.now(), 0, 50.19, 49.73, 50.03, 0, complete = true)
)
val actual = Indicators.atr(6, inputCandle, None)
actual shouldBe None
}
it("should return None if previous value specified but amount of candles is less than 2") {
val inputCandle = Seq(CandleStick(Instant.now(), 0, 50.36, 49.26, 50.31, 0, complete = true))
val actual = Indicators.atr(14, inputCandle, Option(1))
actual shouldBe None
}
}
}
开发者ID:cnnickolay,项目名称:forex-trader,代码行数:55,代码来源:Indicators$Test.scala
示例6: IntervalSchedule
//设置package包名称以及导入依赖的类
package com.gaiam.gcsis.util
import org.joda.time.{Interval => JInterval}
import org.joda.time.Instant
import org.joda.time.ReadableInstant
import scala.util.Sorting
class IntervalSchedule(seq: Seq[JInterval]) {
val intervals: Array[JInterval] = Sorting.stableSort(seq, (a: JInterval, b: JInterval) => a.getStart.compareTo(b.getStart) <= 0)
private def combine(i1: JInterval, i2: JInterval) = {
if (i1.contains(i2)) i1
else if (i2.contains(i1)) i2
else new JInterval(i1.getStart, i2.getEnd)
}
def continuousInterval(from: ReadableInstant) = {
intervals.foldLeft[Option[JInterval]](None)(
(result, interval) => {
(result, interval) match {
case (None, i: JInterval) if i.contains(from) => Some(i)
case (None, _) => None
case (Some(res: JInterval), i: JInterval) if res.overlaps(i) || res.abuts(i) => Some(combine(res, i))
case _ => result
}
})
}
}
开发者ID:GaiamTV,项目名称:gcsi-scala-util,代码行数:29,代码来源:IntervalSchedule.scala
示例7: LogGenerator
//设置package包名称以及导入依赖的类
package ch.becompany
import java.net.InetAddress
import _root_.akka.stream.scaladsl.{Sink, Source}
import _root_.akka.actor.ActorSystem
import _root_.akka.stream.ActorMaterializer
import org.joda.time.Instant
import scala.concurrent.duration._
import scala.util.Random
object LogGenerator {
implicit val system = ActorSystem("log-analyzer")
implicit val materializer = ActorMaterializer()
case object Tick
val interval = 200 millis
val rand = new Random(System.currentTimeMillis)
def ips = Seq("1.2.3.4", "2.3.4.5", "3.4.5.6").map(InetAddress.getByName)
def urls = Seq("/foo", "/bar", "/baz")
def userAgents = Seq("Firefox", "Chrome")
def rnd[T](seq: Seq[T]) = seq(rand.nextInt(seq.size))
def createLogEntry(): LogEntry =
LogEntry(rnd(ips), Instant.now, rnd(urls), rnd(userAgents))
def formatLogEntry(e: LogEntry): String =
Seq(e.ip.getHostAddress, e.time.getMillis.toString, e.req, e.userAgent).
map(s => s""""$s"""").
mkString(",")
def apply(): Unit = {
val tickSource = Source.tick(0 seconds, interval, Tick)
val logSource = Source.fromIterator(() => Iterator.continually(createLogEntry))
Source.
zipN(List(logSource, tickSource)).
map(_.head.asInstanceOf[LogEntry]).
map(formatLogEntry).
runWith(Sink.foreach(println))
}
}
开发者ID:becompany,项目名称:akka-streams-example,代码行数:48,代码来源:LogGenerator.scala
示例8: SubjectDaoDoobie
//设置package包名称以及导入依赖的类
package daos.doobie
import daos.SubjectDao
import daos.doobie.DoobieImports._
import doobie.imports._
import doobie.util.transactor.DataSourceTransactor
import javax.inject.Inject
import models.{ Role, User }
import models.security.MySubject
import org.joda.time.Instant
import play.api.db.Database
class SubjectDaoDoobie @Inject() (
db: Database
) extends SubjectDao {
import SubjectDaoDoobie.subjectQuery
private[this] implicit def xa() = DataSourceTransactor[IOLite](db.dataSource)
def subjectByIdentifier(identifier: String): Option[MySubject] = {
subjectQuery(identifier).option.transact(xa()).unsafePerformIO map {
case (id, login, connected, lastAct, rid, rname) ?
MySubject(
User(id, login, "", 0, rid, connected, lastAct),
Role(rid, rname)
)
}
}
}
object SubjectDaoDoobie {
def subjectQuery(login: String): Query0[(Long, String, Boolean, Option[Instant], Int, String)] =
sql"""
Select u.id, u.login, u.connected, u.last_activity, r.id, r.name
from users u join roles r on u.role_id = r.id
where u.login = $login""".query[(Long, String, Boolean, Option[Instant], Int, String)]
}
开发者ID:kdoomsday,项目名称:kaminalapp,代码行数:39,代码来源:SubjectDaoDoobie.scala
示例9: DoobieImports
//设置package包名称以及导入依赖的类
package daos.doobie
import doobie.imports.Meta
import java.sql.Timestamp
import org.joda.time.{ DateTime, Instant }
object DoobieImports {
implicit val InstantMeta: Meta[Instant] = Meta1653280882.nxmap(
(t: Timestamp) ? new Instant(t.getTime),
(i: Instant) ? new Timestamp(i.getMillis)
)
implicit val DateTimeMeta: Meta[DateTime] = Meta1653280882.nxmap(
(t: Timestamp) ? new DateTime(t.getTime),
(d: DateTime) ? new Timestamp(d.getMillis)
)
}
开发者ID:kdoomsday,项目名称:kaminalapp,代码行数:19,代码来源:DoobieImports.scala
示例10: User
//设置package包名称以及导入依赖的类
package models
import slick.backend.DatabaseConfig
import slick.driver.JdbcProfile
import java.sql.Timestamp
import org.joda.time.Instant
case class User (
id: Long,
login: String,
password: String,
salt: Int,
roleId: Int,
connected: Boolean,
lastActivity: Option[Instant]
)
trait UserTable {
val dc: DatabaseConfig[JdbcProfile]
import dc.driver.api._
private[UserTable] class Usuarios(tag: Tag) extends Table[User](tag, "users") {
def id = column[Long] ("id", O.PrimaryKey, O.AutoInc)
def login = column[String]("login")
def password = column[String]("password")
def salt = column[Int]("salt")
def roleId = column[Int]("role_id")
def connected = column[Boolean]("connected")
def lastActivity = column[Option1653280882]("last_activity")
def idxLogin = index("uk_login", login, unique = true)
def * = (id, login, password, salt, roleId, connected, lastActivity).shaped <> (userTupled, userUnapply)
}
// User -> Option[Tuple]
def userUnapply(u: User) =
Some((u.id, u.login, u.password, u.salt, u.roleId, u.connected, u.lastActivity.map(instant2Timestamp)))
// Tuple -> User
def userTupled(row: (Long, String, String, Int, Int, Boolean, Option1653280882)): User = {
val (id, login, pwd, salt, roleId, connected, oLastAct) = row
User(id, login, pwd, salt, roleId, connected, oLastAct.map(timestamp2Instant))
}
// Conversions
def instant2Timestamp(i: Instant): Timestamp = new Timestamp(i.getMillis())
def timestamp2Instant(ts: Timestamp): Instant = new Instant(ts.getTime())
lazy val users = TableQuery[Usuarios]
}
开发者ID:kdoomsday,项目名称:doomcart,代码行数:56,代码来源:User.scala
示例11: Ticker
//设置package包名称以及导入依赖的类
package highperfscala.clientreports.streams
import org.joda.time.Instant
case class Ticker(value: String) extends AnyVal
case class Price(value: BigDecimal) extends AnyVal
case class OrderId(value: Long) extends AnyVal
case class EventInstant(value: Instant) extends AnyVal
case class ClientId(value: Long) extends AnyVal
sealed trait Order {
def created: EventInstant
def id: OrderId
def ticker: Ticker
def price: Price
def clientId: ClientId
}
case class BuyOrder(
created: EventInstant, id: OrderId, ticker: Ticker, price: Price,
clientId: ClientId) extends Order
case class SellOrder(
created: EventInstant, id: OrderId, ticker: Ticker, price: Price,
clientId: ClientId) extends Order
case class Execution(created: EventInstant, id: OrderId, price: Price)
sealed trait OrderBookEvent
case class BuyOrderSubmitted(
created: EventInstant, id: OrderId, ticker: Ticker, price: Price,
clientId: ClientId) extends OrderBookEvent
case class SellOrderSubmitted(
created: EventInstant, id: OrderId, ticker: Ticker, price: Price,
clientId: ClientId) extends OrderBookEvent
case class OrderCanceled(created: EventInstant, id: OrderId)
extends OrderBookEvent
case class OrderExecuted(created: EventInstant, id: OrderId, price: Price)
extends OrderBookEvent
开发者ID:PacktPublishing,项目名称:Scala-High-Performance-Programming,代码行数:39,代码来源:model.scala
示例12: LastHourPositive
//设置package包名称以及导入依赖的类
package highperfscala.clientreports.views
import org.joda.time.Instant
sealed trait LastHourPnL
case object LastHourPositive extends LastHourPnL
case object LastHourNegative extends LastHourPnL
sealed trait LastDayPnL
case object LastDayPositive extends LastDayPnL
case object LastDayNegative extends LastDayPnL
sealed trait LastSevenDayPnL
case object LastSevenDayPositive extends LastSevenDayPnL
case object LastSevenDayNegative extends LastSevenDayPnL
case class Ticker(value: String) extends AnyVal
case class TradingPerformanceTrend(
ticker: Ticker,
lastHour: LastHourPnL,
lastDay: LastDayPnL,
lastSevenDay: LastSevenDayPnL)
case class Price(value: BigDecimal) extends AnyVal
object Price {
def average(ps: List[Price]): Price = {
val prices = ps.map(_.value)
Price(prices.sum / prices.length)
}
}
case class OrderId(value: Long) extends AnyVal
case class CreatedTimestamp(value: Instant) extends AnyVal
case class ClientId(value: Long) extends AnyVal
sealed trait Order {
def created: CreatedTimestamp
def id: OrderId
def ticker: Ticker
def price: Price
def clientId: ClientId
}
case class BuyOrder(
created: CreatedTimestamp, id: OrderId, ticker: Ticker, price: Price,
clientId: ClientId) extends Order
case class SellOrder(
created: CreatedTimestamp, id: OrderId, ticker: Ticker, price: Price,
clientId: ClientId) extends Order
case class Execution(created: CreatedTimestamp, id: OrderId, price: Price)
case class PnL(value: BigDecimal) extends AnyVal
object PnL {
val zero: PnL = PnL(BigDecimal(0))
}
sealed trait PeriodPnL
case object PeriodPositive extends PeriodPnL
case object PeriodNegative extends PeriodPnL
case class GenerateTradingPerformanceTrend(
tickers: List[Ticker], clientId: ClientId)
开发者ID:PacktPublishing,项目名称:Scala-High-Performance-Programming,代码行数:62,代码来源:api.scala
示例13: PerformanceReporting
//设置package包名称以及导入依赖的类
package highperfscala.clientreports.views
import org.joda.time.{Duration, Instant, Interval}
object PerformanceReporting {
def trend(
now: () => Instant,
findOrders: (Interval, Ticker) => List[Order],
findExecutions: (Interval, Ticker) => List[Execution],
request: GenerateTradingPerformanceTrend): List[TradingPerformanceTrend] = {
def periodPnL(
duration: Duration): Map[Ticker, PeriodPnL] = {
val currentTime = now()
val interval = new Interval(currentTime.minus(duration), currentTime)
(for {
ticker <- request.tickers
orders = findOrders(interval, ticker)
executions = findExecutions(interval, ticker)
idToExecPrice = executions.groupBy(_.id).mapValues(es =>
Price.average(es.map(_.price)))
signedExecutionPrices = for {
o <- orders
if o.clientId == request.clientId
price <- idToExecPrice.get(o.id).map(p => o match {
case _: BuyOrder => Price(p.value * -1)
case _: SellOrder => p
}).toList
} yield price
trend = signedExecutionPrices.foldLeft(PnL.zero) {
case (pnl, p) => PnL(pnl.value + p.value)
} match {
case p if p.value >= PnL.zero.value => PeriodPositive
case _ => PeriodNegative
}
} yield ticker -> trend).toMap
}
val tickerToLastHour = periodPnL(Duration.standardHours(1)).mapValues {
case PeriodPositive => LastHourPositive
case PeriodNegative => LastHourNegative
}
val tickerToLastDay = periodPnL(Duration.standardDays(1)).mapValues {
case PeriodPositive => LastDayPositive
case PeriodNegative => LastDayNegative
}
val tickerToLastSevenDays = periodPnL(Duration.standardDays(7)).mapValues {
case PeriodPositive => LastSevenDayPositive
case PeriodNegative => LastSevenDayNegative
}
tickerToLastHour.zip(tickerToLastDay).zip(tickerToLastSevenDays).map({
case (((t, lastHour), (_, lastDay)), (_, lastSevenDays)) =>
TradingPerformanceTrend(t, lastHour, lastDay, lastSevenDays)
}).toList
}
}
开发者ID:PacktPublishing,项目名称:Scala-High-Performance-Programming,代码行数:58,代码来源:PerformanceReporting.scala
示例14: ViewPerformanceReporting
//设置package包名称以及导入依赖的类
package highperfscala.clientreports.views
import org.joda.time.{Duration, Instant, Interval}
object ViewPerformanceReporting {
def trend(
now: () => Instant,
findOrders: (Interval, Ticker) => List[Order],
findExecutions: (Interval, Ticker) => List[Execution],
request: GenerateTradingPerformanceTrend): List[TradingPerformanceTrend] = {
def periodPnL(
duration: Duration): Map[Ticker, PeriodPnL] = {
val currentTime = now()
val interval = new Interval(currentTime.minus(duration), currentTime)
(for {
ticker <- request.tickers
orders = findOrders(interval, ticker)
executions = findExecutions(interval, ticker)
idToExecPrice = executions.groupBy(_.id).mapValues(es =>
Price.average(es.map(_.price)))
signedExecutionPrices = for {
o <- orders.view
if o.clientId == request.clientId
price <- idToExecPrice.get(o.id).map(p => o match {
case _: BuyOrder => Price(p.value * -1)
case _: SellOrder => p
}).toList
} yield price
trend = signedExecutionPrices.foldLeft(PnL.zero) {
case (pnl, p) => PnL(pnl.value + p.value)
} match {
case p if p.value >= PnL.zero.value => PeriodPositive
case _ => PeriodNegative
}
} yield ticker -> trend).toMap
}
val tickerToLastHour = periodPnL(Duration.standardHours(1)).mapValues {
case PeriodPositive => LastHourPositive
case PeriodNegative => LastHourNegative
}
val tickerToLastDay = periodPnL(Duration.standardDays(1)).mapValues {
case PeriodPositive => LastDayPositive
case PeriodNegative => LastDayNegative
}
val tickerToLastSevenDays = periodPnL(Duration.standardDays(7)).mapValues {
case PeriodPositive => LastSevenDayPositive
case PeriodNegative => LastSevenDayNegative
}
tickerToLastHour.zip(tickerToLastDay).zip(tickerToLastSevenDays).map({
case (((t, lastHour), (_, lastDay)), (_, lastSevenDays)) =>
TradingPerformanceTrend(t, lastHour, lastDay, lastSevenDays)
}).toList
}
}
开发者ID:PacktPublishing,项目名称:Scala-High-Performance-Programming,代码行数:60,代码来源:ViewPerformanceReporting.scala
示例15: Price
//设置package包名称以及导入依赖的类
package highperfscala.orderbook
import org.joda.time.Instant
import org.scalacheck.Gen
// Model taken from chapter 2
case class Price(value: BigDecimal) extends AnyVal
object Price {
implicit val genPrice: Gen[Price] = Gen.posNum[Double].map(d =>
Price(BigDecimal(d)))
implicit val ordering: Ordering[Price] = new Ordering[Price] {
def compare(x: Price, y: Price): Int =
Ordering.BigDecimal.compare(x.value, y.value)
}
}
case class OrderId(value: Long)
object OrderId {
implicit val genOrderId: Gen[OrderId] = Gen.posNum[Long].map(OrderId.apply)
}
sealed trait LimitOrder {
def id: OrderId
def price: Price
}
object LimitOrder {
implicit val genLimitOrder: Gen[LimitOrder] = Gen.oneOf(
BuyLimitOrder.genBuyLimitOrder, SellLimitOrder.genSellLimitOrder)
}
case class BuyLimitOrder(id: OrderId, price: Price) extends LimitOrder
object BuyLimitOrder {
implicit val genBuyLimitOrder: Gen[BuyLimitOrder] = Gen.zip(
OrderId.genOrderId, Price.genPrice).map(Function.tupled(BuyLimitOrder.apply))
}
case class SellLimitOrder(id: OrderId, price: Price) extends LimitOrder
object SellLimitOrder {
implicit val genSellLimitOrder: Gen[SellLimitOrder] = Gen.zip(
OrderId.genOrderId, Price.genPrice).map(Function.tupled(
SellLimitOrder.apply))
}
case class Execution(orderId: OrderId, price: Price)
case class CommandInstant(value: Instant) extends AnyVal
object CommandInstant {
def now(): CommandInstant =
CommandInstant(new Instant(System.currentTimeMillis()))
implicit val genCommandInstant: Gen[CommandInstant] =
Gen.posNum[Long].map(l => CommandInstant(new Instant(l)))
}
case class EventInstant(value: Instant) extends AnyVal
object EventInstant {
def now(): EventInstant =
EventInstant(new Instant(System.currentTimeMillis()))
implicit val genEventInstant: Gen[EventInstant] =
Gen.posNum[Long].map(l => EventInstant(new Instant(l)))
}
开发者ID:PacktPublishing,项目名称:Scala-High-Performance-Programming,代码行数:60,代码来源:model.scala
示例16: RichCollection
//设置package包名称以及导入依赖的类
package com.zendesk.scalaflow.sugar
import com.google.cloud.dataflow.sdk.coders.Coder
import com.google.cloud.dataflow.sdk.transforms._
import com.google.cloud.dataflow.sdk.values.{KV, PCollection, PCollectionList, POutput}
import com.zendesk.scalaflow.sugar.WrapperOps._
import org.joda.time.Instant
import scala.collection.JavaConverters._
trait CollectionOps {
implicit class RichCollection[A: Coder](val collection: PCollection[A]) {
def parDo[B](f: DoFn[A, B]#ProcessContext => Unit)(implicit coder: Coder[B]): PCollection[B] = {
collection.apply(asParDo(f)).setCoder(coder)
}
def map[B : Coder](f: A => B): PCollection[B] = parDo {
c => c.output(f(c.element))
}
def filter(f: A => Boolean): PCollection[A] = parDo {
c => if (f(c.element)) c.output(c.element)
}
def collect[B : Coder](pf: PartialFunction[A, B]): PCollection[B] = parDo {
c => if (pf.isDefinedAt(c.element)) c.output(pf(c.element))
}
def extractTimestamp(implicit c: Coder[(A, Instant)]): PCollection[(A, Instant)] = parDo {
c => c.output((c.element, c.timestamp))
}
def flatMap[B : Coder](f: A => Iterable[B]): PCollection[B] = parDo {
c => f(c.element).foreach(c.output)
}
def foreach(f: A => Unit): PCollection[A] = parDo {
c => { f(c.element); c.output(c.element) }
}
def withKey[B : Coder](f: A => B)(implicit c: Coder[KV[B, A]]): PCollection[KV[B, A]] = parDo {
c => c.output(KV.of(f(c.element), c.element))
}
def flattenWith(first: PCollection[A], others: PCollection[A]*): PCollection[A] = {
val all = collection :: first :: others.toList
PCollectionList.of(all.asJava).apply(Flatten.pCollections[A])
}
def transformWith[B <: POutput](name: String)(f: PCollection[A] => B): B = {
collection.apply(name, asPTransform(f))
}
}
}
object CollectionOps extends CollectionOps
开发者ID:zendesk,项目名称:scala-flow,代码行数:59,代码来源:CollectionOps.scala
示例17: RichKVCollection
//设置package包名称以及导入依赖的类
package com.zendesk.scalaflow.sugar
import java.lang.{Iterable => JIterable}
import com.google.cloud.dataflow.sdk.coders.{Coder, IterableCoder}
import com.google.cloud.dataflow.sdk.transforms.{Combine, DoFn, GroupByKey, Top}
import com.google.cloud.dataflow.sdk.values.{KV, PCollection}
import com.zendesk.scalaflow._
import org.joda.time.Instant
import scala.collection.JavaConverters._
trait KVCollectionOps {
implicit class RichKVCollection[K : Coder, A: Coder](val collection: PCollection[KV[K, A]]) {
def parDo[B](f: DoFn[KV[K, A], KV[K, B]]#ProcessContext => Unit)(implicit coder: Coder[KV[K, B]]): PCollection[KV[K, B]] = {
collection.apply(asParDo(f)).setCoder(coder)
}
def mapValue[B : Coder](f: A => B): PCollection[KV[K, B]] = parDo {
c => c.output(KV.of(c.element.getKey, f(c.element.getValue)))
}
def flatMapValue[B : Coder](f: A => Iterable[B]): PCollection[KV[K, B]] = parDo {
c => f(c.element.getValue).foreach { value => c.output(KV.of(c.element.getKey, value)) }
}
def extractTimestamp: PCollection[KV[K, (A, Instant)]] = parDo {
c => c.output(KV.of(c.element.getKey, (c.element.getValue, c.timestamp)))
}
def combinePerKey(zero: A)(f: (A, A) => A): PCollection[KV[K, A]] = {
val g = (input: JIterable[A]) => input.asScala.fold(zero)(f)
collection.apply(Combine.perKey[K, A](asSimpleFn(g)))
}
def groupByKey: PCollection[KV[K, Iterable[A]]] = {
collection.apply(GroupByKey.create[K, A]).mapValue(_.asScala)
}
def topPerKey(count: Int)(implicit ordered: Ordering[A]): PCollection[KV[K, List[A]]] = {
collection.apply(Top.perKey(count, ordered)).mapValue(_.asScala.toList)
}
}
}
object KVCollectionOps extends KVCollectionOps
开发者ID:zendesk,项目名称:scala-flow,代码行数:49,代码来源:KVCollectionOps.scala
注:本文中的org.joda.time.Instant类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论