• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Scala GenericDatumWriter类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Scala中org.apache.avro.generic.GenericDatumWriter的典型用法代码示例。如果您正苦于以下问题:Scala GenericDatumWriter类的具体用法?Scala GenericDatumWriter怎么用?Scala GenericDatumWriter使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了GenericDatumWriter类的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Scala代码示例。

示例1: Tip

//设置package包名称以及导入依赖的类
package com.alvin.niagara.model

import java.io.ByteArrayOutputStream
import java.util

import org.apache.avro.Schema
import org.apache.avro.generic.{GenericData, GenericDatumReader, GenericDatumWriter, GenericRecord}
import org.apache.avro.io.{DecoderFactory, EncoderFactory}

import scala.collection.JavaConversions._
import scala.io.Source


case class Tip(business_id: String, date: String, likes: Long, text: String, `type`: String, user_id: String)


object TipSerde {

  val avroSchema = Source.fromInputStream(getClass.getResourceAsStream("/schema/tip.avsc")).mkString
  val schema = new Schema.Parser().parse(avroSchema)

  val reader = new GenericDatumReader[GenericRecord](schema)
  val writer = new GenericDatumWriter[GenericRecord](schema)

  def serialize(tip: Tip): Array[Byte] = {

    val out = new ByteArrayOutputStream()
    val encoder = EncoderFactory.get.binaryEncoder(out, null)

    val avroRecord = new GenericData.Record(schema)
    avroRecord.put("business_id", tip.business_id)
    avroRecord.put("date", tip.date)
    avroRecord.put("likes", tip.likes)
    avroRecord.put("text", tip.text)
    avroRecord.put("type", tip.`type`)
    avroRecord.put("user_id", tip.user_id)

    writer.write(avroRecord, encoder)
    encoder.flush
    out.close
    out.toByteArray

  }

  def deserialize(bytes: Array[Byte]): Tip = {

    val decoder = DecoderFactory.get.binaryDecoder(bytes, null)
    val record = reader.read(null, decoder)

    Tip(
      record.get("business_id").toString,
      record.get("date").toString,
      record.get("likes").asInstanceOf[Long],
      record.get("text").toString,
      record.get("type").toString,
      record.get("user_id").toString
    )
  }
} 
开发者ID:AlvinCJin,项目名称:Niagara,代码行数:60,代码来源:Tip.scala


示例2: AvroNodeSerializer

//设置package包名称以及导入依赖的类
package eventgen.launcher.core.avro

import java.io.ByteArrayOutputStream

import eventgen.launcher.core.NodeSerializer
import org.apache.avro.Schema
import org.apache.avro.generic.{GenericDatumWriter, GenericRecord}
import org.apache.avro.io.EncoderFactory


class AvroNodeSerializer extends NodeSerializer[Schema, AvroNode[_], ByteArrayOutputStream] {
  override def serialize(metadata: Schema, node: AvroNode[_]): ByteArrayOutputStream = {
    val record = node.asInstanceOf[AvroRecord]
    val writer = new GenericDatumWriter[GenericRecord]
    writer.setSchema(metadata)
    val outputStream = new ByteArrayOutputStream
    val encoder = EncoderFactory.get().jsonEncoder(metadata, outputStream, true)
    writer.write(record.value, encoder)
    encoder.flush()
    outputStream
  }
} 
开发者ID:gpulse,项目名称:eventgenerator,代码行数:23,代码来源:AvroNodeSerializer.scala


示例3: AvroUtils

//设置package包名称以及导入依赖的类
package pulse.kafka.avro

import java.io.{ByteArrayInputStream, ByteArrayOutputStream, DataInputStream, File}

import com.twitter.util.Future
import org.apache.avro.Schema
import org.apache.avro.file.DataFileWriter
import org.apache.avro.generic.{GenericDatumReader, GenericDatumWriter, GenericRecord}
import org.apache.avro.io.DecoderFactory
import pulse.kafka.extensions.managedByteArrayInputStream
import pulse.kafka.extensions.managedByteArrayOutputStream
import pulse.kafka.extensions.catsStdInstancesForFuture
import scala.concurrent.ExecutionContext.Implicits._

object AvroUtils {

  import pulse.common.syntax._


  def jsonToAvroBytes(json: String, schemaFile: File): Future[Array[Byte]] =
    use(new ByteArrayOutputStream()) { output =>
      for {
        s <- loadSchema(schemaFile)
        _ <- convertImpl(json, output, s)
      } yield output.toByteArray
    }

  private def convertImpl(json: String, output: ByteArrayOutputStream, schemaSpec: Schema): Future[GenericDatumReader[GenericRecord]] =

    use(new ByteArrayInputStream(json.getBytes)) { input =>
      for {
        w <- getWriter(output, schemaSpec)
        r <- getReader(input, schemaSpec, w)
      } yield r
    }

  def getReader(input: ByteArrayInputStream, schemaSpec: Schema, w: DataFileWriter[GenericRecord]) = Future.value {
    val reader = new GenericDatumReader[GenericRecord](schemaSpec)
    val datum = reader.read(null, getJsonDecoder(input, schemaSpec))
    w.append(datum)
    w.flush()
    reader
  }

  private def getJsonDecoder(input: ByteArrayInputStream, schema: Schema) =
    DecoderFactory.get.jsonDecoder(schema, new DataInputStream(input))

  private def getWriter(output: ByteArrayOutputStream, schemaSpec: Schema) = {
    Future.value {
      val writer = new DataFileWriter[GenericRecord](new GenericDatumWriter[GenericRecord]())
      writer.create(schemaSpec, output)
    }
  }

  private def loadSchema(schemaFile: File): Future[Schema] =
    Future {
      new Schema.Parser().parse(schemaFile)
    }
} 
开发者ID:gpulse,项目名称:kafka,代码行数:60,代码来源:AvroUtils.scala


示例4: AvroUtils

//设置package包名称以及导入依赖的类
package pulse.services.example.avro

import java.io.{ByteArrayInputStream, ByteArrayOutputStream, DataInputStream, File}

import org.apache.avro.Schema
import org.apache.avro.file.DataFileWriter
import org.apache.avro.generic.{GenericDatumReader, GenericDatumWriter, GenericRecord}
import org.apache.avro.io.DecoderFactory
import pulse.services.example.extensions._

object AvroUtils {

  def jsonToAvroBytes(json: String, schemaFile: File) = {
    use(new ByteArrayOutputStream())(output => {
      val schemaSpec = loadSchema(schemaFile)
      use(new ByteArrayInputStream(json.getBytes))(input => {
        val writer = new DataFileWriter[GenericRecord](new GenericDatumWriter[GenericRecord]())
        writer.create(schemaSpec, output)
        val reader = new GenericDatumReader[GenericRecord](schemaSpec)
        val datum = reader.read(null, getJsonDecoder(input, schemaSpec))
        writer.append(datum)
        writer.flush()
      })
      output.toByteArray
    })
  }

  def getJsonDecoder(input: ByteArrayInputStream, schema: Schema) =
    DecoderFactory.get.jsonDecoder(schema, new DataInputStream(input))

  def loadSchema(schemaFile: File) =
      new Schema.Parser().parse(schemaFile)
} 
开发者ID:gpulse,项目名称:services,代码行数:34,代码来源:AvroUtils.scala


示例5: AvroFileWriter

//设置package包名称以及导入依赖的类
package com.landoop.avro

import java.io.{BufferedOutputStream, File, FileOutputStream}

import com.landoop.avro.codec.CodecFactory
import org.apache.avro.Schema
import org.apache.avro.file.DataFileWriter
import org.apache.avro.generic.GenericRecord

object AvroFileWriter {
  def fastWrite(file: File,
                count: Int,
                parallelization: Int,
                schema: Schema,
                records: IndexedSeq[GenericRecord]) = {
    val out = new BufferedOutputStream(new FileOutputStream(file), 4 * 1048576)

    import org.apache.avro.generic.GenericDatumWriter
    val datumWriter = new GenericDatumWriter[GenericRecord](schema)
    val builder = FastDataFileWriterBuilder(datumWriter, out, schema)
      .withCodec(CodecFactory.snappyCodec())
      .withFlushOnEveryBlock(false)
      .withParallelization(parallelization)

    builder.encoderFactory.configureBufferSize(4 * 1048576)
    builder.encoderFactory.configureBlockSize(4 * 1048576)

    val fileWriter = builder.build()
    fileWriter.write(records)
    fileWriter.close()
  }

  def write(file: File,
            count: Int,
            schema: Schema,
            records: Seq[GenericRecord]) = {
    val out = new BufferedOutputStream(new FileOutputStream(file), 4 * 1048576)
    
    import org.apache.avro.generic.GenericDatumWriter
    val datumWriter = new GenericDatumWriter[GenericRecord](schema)
    val writer = new DataFileWriter(datumWriter)
      .setCodec(org.apache.avro.file.CodecFactory.snappyCodec())
      .create(schema, out)

    writer.setFlushOnEveryBlock(false)

    records.foreach(writer.append)
    writer.close()
  }
} 
开发者ID:Landoop,项目名称:fast-avro-write,代码行数:51,代码来源:AvroFileWriter.scala


示例6: GenericRecordEventJsonConverter

//设置package包名称以及导入依赖的类
package com.pragmasoft.eventaggregator

import java.io.ByteArrayOutputStream

import com.pragmasoft.eventaggregator.model.KafkaAvroEvent
import com.sksamuel.elastic4s.source.Indexable
import org.apache.avro.generic.{GenericDatumWriter, GenericRecord}
import org.apache.avro.io.EncoderFactory
import org.joda.time.format.ISODateTimeFormat

object GenericRecordEventJsonConverter {

  case class EventHeaderDescriptor(eventIdPath: Option[String], eventTsPath: Option[String]) {
    import com.pragmasoft.eventaggregator.GenericRecordFieldExtractionSupport._

    def extractEventId[T <: GenericRecord](event: T): Option[String] = eventIdPath.flatMap(event.getField[Any]).map(_.toString)

    def extractEventTs[T <: GenericRecord](event: T): Option[Long] = eventTsPath.flatMap(event.getField[Long])
  }

  private def asJsonString(event: GenericRecord): String = {
    val out = new ByteArrayOutputStream()
    val jsonEncoder = EncoderFactory.get().jsonEncoder(event.getSchema, out)
    val writer = new GenericDatumWriter[GenericRecord](event.getSchema)

    writer.write(event, jsonEncoder)
    jsonEncoder.flush()
    out.close()

    out.toString
  }

  implicit def kafkaAvroEventIndexable(implicit headerDescriptor: EventHeaderDescriptor): Indexable[KafkaAvroEvent[GenericRecord]] = new Indexable[KafkaAvroEvent[GenericRecord]] {
    val timestampFormat = ISODateTimeFormat.dateTime().withZoneUTC

    override def json(event: KafkaAvroEvent[GenericRecord]): String = {
      val timestampJsonAttributeMaybe =
        headerDescriptor.extractEventTs(event.data)
          .map(ts => s""" "@timestamp" : "${timestampFormat.print(ts)}",""")

      s"""{
          |  ${timestampJsonAttributeMaybe.getOrElse("")}
          |  "location" : { "topic" : "${event.location.topic}", "partition" : ${event.location.partition}, "offset" : ${event.location.offset} },
          |  "schemaName" : "${event.schemaName}",
          |  "data" : ${asJsonString(event.data)}
          |} """.stripMargin

    }
  }

} 
开发者ID:galarragas,项目名称:event-aggregator,代码行数:52,代码来源:GenericRecordEventJsonConverter.scala



注:本文中的org.apache.avro.generic.GenericDatumWriter类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Scala _类代码示例发布时间:2022-05-23
下一篇:
Scala Ok类代码示例发布时间:2022-05-23
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap