• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Scala NeuralNetConfiguration类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Scala中org.deeplearning4j.nn.conf.NeuralNetConfiguration的典型用法代码示例。如果您正苦于以下问题:Scala NeuralNetConfiguration类的具体用法?Scala NeuralNetConfiguration怎么用?Scala NeuralNetConfiguration使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了NeuralNetConfiguration类的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Scala代码示例。

示例1: RNNEmbedding

//设置package包名称以及导入依赖的类
package org.dl4scala.examples.misc.embedding

import org.deeplearning4j.nn.conf.NeuralNetConfiguration
import org.deeplearning4j.nn.conf.layers.{EmbeddingLayer, GravesLSTM, RnnOutputLayer}
import org.deeplearning4j.nn.conf.preprocessor.{FeedForwardToRnnPreProcessor, RnnToFeedForwardPreProcessor}
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork
import org.nd4j.linalg.activations.Activation
import org.nd4j.linalg.factory.Nd4j
import org.nd4j.linalg.lossfunctions.LossFunctions

import scala.util.Random


object RNNEmbedding {
  def main(args: Array[String]): Unit = {
    val nClassesIn = 10
    val batchSize = 3
    val timeSeriesLength = 8
    val inEmbedding = Nd4j.create(batchSize, 1, timeSeriesLength)
    val outLabels = Nd4j.create(batchSize, 4, timeSeriesLength)

    val r = new Random(12345)
    (0 until batchSize).foreach{i =>
      (0 until timeSeriesLength).foreach{j =>
        val classIdx = r.nextInt(nClassesIn)
        inEmbedding.putScalar(Array[Int](i, 0, j), classIdx)
        val labelIdx = r.nextInt(4)
        outLabels.putScalar(Array[Int](i, labelIdx, j), 1.0)
      }
    }

    val conf = new NeuralNetConfiguration.Builder()
      .activation(Activation.RELU)
      .list()
      .layer(0, new EmbeddingLayer.Builder().nIn(nClassesIn).nOut(5).build())
      .layer(1, new GravesLSTM.Builder().nIn(5).nOut(7).activation(Activation.SOFTSIGN).build())
      .layer(2, new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT).nIn(7).nOut(4).activation(Activation.SOFTMAX).build())
      .inputPreProcessor(0, new RnnToFeedForwardPreProcessor())
      .inputPreProcessor(1, new FeedForwardToRnnPreProcessor())
      .build()

    val net = new MultiLayerNetwork(conf)
    net.init()

    net.setInput(inEmbedding)
    net.setLabels(outLabels)

    net.computeGradientAndScore()
    System.out.println(net.score())
  }
} 
开发者ID:endymecy,项目名称:dl4scala,代码行数:52,代码来源:RNNEmbedding.scala


示例2: MultiLayerNetworkExternalErrors

//设置package包名称以及导入依赖的类
package org.dl4scala.examples.misc.externalerrors

import org.deeplearning4j.nn.conf.layers.DenseLayer
import org.deeplearning4j.nn.conf.{NeuralNetConfiguration, Updater}
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork
import org.deeplearning4j.nn.weights.WeightInit
import org.nd4j.linalg.activations.Activation
import org.nd4j.linalg.factory.Nd4j


object MultiLayerNetworkExternalErrors {
  def main(array: Array[String]): Unit = {
    //Create the model
    val nIn = 4
    val nOut = 3
    Nd4j.getRandom.setSeed(12345)

    val conf = new NeuralNetConfiguration.Builder()
      .seed(12345)
      .activation(Activation.TANH)
      .weightInit(WeightInit.XAVIER)
      .updater(Updater.NESTEROVS)
      .learningRate(0.1)
      .list()
      .layer(0, new DenseLayer.Builder().nIn(nIn).nOut(3).build())
      .layer(1, new DenseLayer.Builder().nIn(3).nOut(3).build())
      .backprop(true).pretrain(false)
      .build()

    val model = new MultiLayerNetwork(conf)
    model.init()

    //Calculate gradient with respect to an external error//Calculate gradient with respect to an external error

    val minibatch = 32
    val input = Nd4j.rand(minibatch, nIn)
    val output = model.output(input) //Do forward pass. Normally: calculate the error based on this

    val externalError = Nd4j.rand(minibatch, nOut)
    val p = model.backpropGradient(externalError) //Calculate backprop gradient based on error array

    //Update the gradient: apply learning rate, momentum, etc
    //This modifies the Gradient object in-place
    val gradient = p.getFirst
    val iteration = 0
    model.getUpdater.update(model, gradient, iteration, minibatch)

    //Get a row vector gradient array, and apply it to the parameters to update the model
    val updateVector = gradient.gradient
    model.params.subi(updateVector)
  }
} 
开发者ID:endymecy,项目名称:dl4scala,代码行数:53,代码来源:MultiLayerNetworkExternalErrors.scala


示例3: WeightedLossFunctionExample

//设置package包名称以及导入依赖的类
package org.dl4scala.examples.misc

import org.deeplearning4j.nn.conf.NeuralNetConfiguration
import org.deeplearning4j.nn.conf.layers.{DenseLayer, OutputLayer}
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork
import org.deeplearning4j.nn.weights.WeightInit
import org.nd4j.linalg.activations.Activation
import org.nd4j.linalg.factory.Nd4j
import org.nd4j.linalg.lossfunctions.impl.LossMCXENT


object WeightedLossFunctionExample {
  def main(args: Array[String]): Unit = {
    val numInputs = 4
    val numClasses = 3 //3 classes for classification

    // Create the weights array. Note that we have 3 output classes, therefore we have 3 weights
    val weightsArray = Nd4j.create(Array[Double](0.5, 0.5, 1.0))

    val conf = new NeuralNetConfiguration.Builder()
      .activation(Activation.RELU)
      .weightInit(WeightInit.XAVIER)
      .learningRate(0.1)
      .list()
      .layer(0, new DenseLayer.Builder().nIn(numInputs).nOut(5)
        .build())
      .layer(1, new DenseLayer.Builder().nIn(5).nOut(5)
        .build())
      .layer(2, new OutputLayer.Builder()
        .lossFunction(new LossMCXENT(weightsArray))     // *** Weighted loss function configured here ***
        .activation(Activation.SOFTMAX)
        .nIn(5).nOut(numClasses).build())
      .backprop(true).pretrain(false)
      .build()

    //Initialize and use the model as before
    val model = new MultiLayerNetwork(conf)
    model.init()
  }
} 
开发者ID:endymecy,项目名称:dl4scala,代码行数:41,代码来源:WeightedLossFunctionExample.scala



注:本文中的org.deeplearning4j.nn.conf.NeuralNetConfiguration类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Scala BouncyCastleProvider类代码示例发布时间:2022-05-23
下一篇:
Scala Graphics类代码示例发布时间:2022-05-23
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap