本文整理汇总了Scala中org.apache.spark.ml.classification.MultilayerPerceptronClassificationModel类的典型用法代码示例。如果您正苦于以下问题:Scala MultilayerPerceptronClassificationModel类的具体用法?Scala MultilayerPerceptronClassificationModel怎么用?Scala MultilayerPerceptronClassificationModel使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了MultilayerPerceptronClassificationModel类的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Scala代码示例。
示例1: buildMultiPerpectronNetwork
//设置package包名称以及导入依赖的类
package com.sircamp.algorithms.neuralnetwork
import java.io.{BufferedWriter, FileOutputStream, OutputStreamWriter}
import com.sircamp.Application
import org.apache.spark.ml.classification.{MultilayerPerceptronClassificationModel, MultilayerPerceptronClassifier}
import org.apache.spark.ml.linalg.Vector
import org.apache.spark.ml.linalg.VectorUDT
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{Dataset, Row, SparkSession}
import org.apache.spark.sql.types._
val file = new java.io.File(TEMP_FILE_PATH)
if( file.exists){
file.delete()
}
val writer = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file)))
var sb = new StringBuilder()
trainingData.collect().foreach(f=>{
var arr = f.features.toArray
var features = ""
for(i <- arr.indices){
features = features +((i+1)+":"+arr(i))+" "
}
writer.write((f.label+" "+features) + "\n")
})
writer.close()
}
def buildMultiPerpectronNetwork(trainingData:Dataset[Row], layers:Array[Int], maxIter:Int):MultilayerPerceptronClassificationModel = {
val trainer = new MultilayerPerceptronClassifier()
.setLayers(layers)
.setBlockSize(blockSize)
.setSeed(seed)
.setMaxIter(maxIter)
trainer.fit(trainingData)
}
}
开发者ID:sirCamp,项目名称:mushrooms-ml-classfier-scala-spark,代码行数:47,代码来源:NeuralNetworkBuilder.scala
示例2: LocalMultilayerPerceptronClassificationModel
//设置package包名称以及导入依赖的类
package io.hydrosphere.spark_ml_serving.classification
import io.hydrosphere.spark_ml_serving._
import org.apache.spark.ml.classification.MultilayerPerceptronClassificationModel
import org.apache.spark.ml.linalg.{Vector, Vectors}
class LocalMultilayerPerceptronClassificationModel(override val sparkTransformer: MultilayerPerceptronClassificationModel) extends LocalTransformer[MultilayerPerceptronClassificationModel] {
override def transform(localData: LocalData): LocalData = {
localData.column(sparkTransformer.getFeaturesCol) match {
case Some(column) =>
val method = classOf[MultilayerPerceptronClassificationModel].getMethod("predict", classOf[Vector])
method.setAccessible(true)
val newColumn = LocalDataColumn(sparkTransformer.getPredictionCol, column.data map { feature =>
method.invoke(sparkTransformer, feature.asInstanceOf[Vector]).asInstanceOf[Double]
})
localData.withColumn(newColumn)
case None => localData
}
}
}
object LocalMultilayerPerceptronClassificationModel extends LocalModel[MultilayerPerceptronClassificationModel] {
override def load(metadata: Metadata, data: Map[String, Any]): MultilayerPerceptronClassificationModel = {
val constructor = classOf[MultilayerPerceptronClassificationModel].getDeclaredConstructor(classOf[String], classOf[Array[Int]], classOf[Vector])
constructor.setAccessible(true)
constructor
.newInstance(metadata.uid, data("layers").asInstanceOf[List[Int]].to[Array], Vectors.dense(data("weights").asInstanceOf[Map[String, Any]]("values").asInstanceOf[List[Double]].toArray))
.setFeaturesCol(metadata.paramMap("featuresCol").asInstanceOf[String])
.setPredictionCol(metadata.paramMap("predictionCol").asInstanceOf[String])
}
override implicit def getTransformer(transformer: MultilayerPerceptronClassificationModel): LocalTransformer[MultilayerPerceptronClassificationModel] = new LocalMultilayerPerceptronClassificationModel(transformer)
}
开发者ID:Hydrospheredata,项目名称:spark-ml-serving,代码行数:35,代码来源:LocalMultilayerPerceptronClassificationModel.scala
示例3: LocalMultilayerPerceptronClassificationModel
//设置package包名称以及导入依赖的类
package io.hydrosphere.mist.api.ml.classification
import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.classification.MultilayerPerceptronClassificationModel
import org.apache.spark.ml.linalg.{Vector, Vectors}
class LocalMultilayerPerceptronClassificationModel(override val sparkTransformer: MultilayerPerceptronClassificationModel) extends LocalTransformer[MultilayerPerceptronClassificationModel] {
override def transform(localData: LocalData): LocalData = {
localData.column(sparkTransformer.getFeaturesCol) match {
case Some(column) =>
val method = classOf[MultilayerPerceptronClassificationModel].getMethod("predict", classOf[Vector])
method.setAccessible(true)
val newColumn = LocalDataColumn(sparkTransformer.getPredictionCol, column.data map { feature =>
method.invoke(sparkTransformer, feature.asInstanceOf[Vector]).asInstanceOf[Double]
})
localData.withColumn(newColumn)
case None => localData
}
}
}
object LocalMultilayerPerceptronClassificationModel extends LocalModel[MultilayerPerceptronClassificationModel] {
override def load(metadata: Metadata, data: Map[String, Any]): MultilayerPerceptronClassificationModel = {
val constructor = classOf[MultilayerPerceptronClassificationModel].getDeclaredConstructor(classOf[String], classOf[Array[Int]], classOf[Vector])
constructor.setAccessible(true)
constructor
.newInstance(metadata.uid, data("layers").asInstanceOf[List[Int]].to[Array], Vectors.dense(data("weights").asInstanceOf[Map[String, Any]]("values").asInstanceOf[List[Double]].toArray))
.setFeaturesCol(metadata.paramMap("featuresCol").asInstanceOf[String])
.setPredictionCol(metadata.paramMap("predictionCol").asInstanceOf[String])
}
override implicit def getTransformer(transformer: MultilayerPerceptronClassificationModel): LocalTransformer[MultilayerPerceptronClassificationModel] = new LocalMultilayerPerceptronClassificationModel(transformer)
}
开发者ID:Hydrospheredata,项目名称:mist,代码行数:35,代码来源:LocalMultilayerPerceptronClassificationModel.scala
示例4: MlpcHelpers
//设置package包名称以及导入依赖的类
package com.zobot.ai.spark.helpers
import org.apache.spark.ml.classification.{MultilayerPerceptronClassificationModel, MultilayerPerceptronClassifier}
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.sql.DataFrame
object MlpcHelpers {
case class NeuralNetworkLayers (
featureLayerSize: Int,
intermediateLayerSizes: List[Int],
classLayerSize: Int
)
def layersToArray(layers: NeuralNetworkLayers): Array[Int] = {
(layers.featureLayerSize :: layers.intermediateLayerSizes ::: List(layers.classLayerSize)).toArray
}
def createTrainer(layers: NeuralNetworkLayers, blockSize: Int, maxIterations: Int, seed: Option[Long]): MultilayerPerceptronClassifier = {
val mlpcClassifier = new MultilayerPerceptronClassifier()
.setLayers(layersToArray(layers))
.setBlockSize(blockSize)
.setMaxIter(maxIterations)
seed match {
case Some(n) => mlpcClassifier.setSeed(n)
case None => mlpcClassifier
}
}
def trainModel(trainer: MultilayerPerceptronClassifier, trainingData: DataFrame): MultilayerPerceptronClassificationModel = {
trainer.fit(trainingData)
}
def testModel(model: MultilayerPerceptronClassificationModel, testData: DataFrame): DataFrame = model.transform(testData)
def getModelAccuracy(testResults: DataFrame): Double = {
val predictionAndLabels = testResults.select("prediction", "label")
val evaluator = new MulticlassClassificationEvaluator().setMetricName("accuracy")
evaluator.evaluate(predictionAndLabels)
}
}
开发者ID:BecauseNoReason,项目名称:zobot,代码行数:41,代码来源:MlpcHelpers.scala
注:本文中的org.apache.spark.ml.classification.MultilayerPerceptronClassificationModel类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论