• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Scala DenseVector类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Scala中org.apache.spark.ml.linalg.DenseVector的典型用法代码示例。如果您正苦于以下问题:Scala DenseVector类的具体用法?Scala DenseVector怎么用?Scala DenseVector使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了DenseVector类的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Scala代码示例。

示例1:

//设置package包名称以及导入依赖的类
import java.io.{File, FileOutputStream}
import java.nio.channels.FileChannel
import java.nio.file.{Paths, StandardOpenOption}

import com.indix.ml2npy.Ml2NpyCSR
import org.apache.spark.ml.linalg.{DenseVector, SparseVector, Vector}
import org.scalatest.FlatSpec
import sys.process._


    val nosetestspath="nosetests "
    val pathToTest = getClass.getResource("/python/Npytest.py").getPath+":"

    "ML2NpyFile" should "Convert to CSR matrix" in {

      val csrGen = new Ml2NpyCSR
      val data: Seq[Vector] = Seq(
        new SparseVector(3, Array(0), Array(0.1)),
        new SparseVector(3, Array(1), Array(0.2)),
        new SparseVector(3, Array(2), Array(0.3))
      )
      val labels = Seq(
        new DenseVector(Array(0, 1)),
        new DenseVector(Array(1, 0)),
        new DenseVector(Array(1, 0))
      )
      data.zip(labels).foreach(tup => csrGen.addRecord(tup._1, tup._2))
      val fos = new FileOutputStream(new File("/tmp/data.npz"))
      fos.write(csrGen.getBytes)
      fos.close()

      val command=nosetestspath + pathToTest+"test_5"
      val response=command.!
      assert(response==0)
    }
} 
开发者ID:indix,项目名称:ml2npy,代码行数:37,代码来源:Ml2NpyCSRSpec.scala


示例2: LocalMaxAbsScalerModel

//设置package包名称以及导入依赖的类
package io.hydrosphere.spark_ml_serving.preprocessors

import io.hydrosphere.spark_ml_serving._
import org.apache.spark.ml.feature.MaxAbsScalerModel
import org.apache.spark.ml.linalg.{DenseVector, SparseVector, Vector, Vectors}

class LocalMaxAbsScalerModel(override val sparkTransformer: MaxAbsScalerModel) extends LocalTransformer[MaxAbsScalerModel] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val maxAbsUnzero = Vectors.dense(sparkTransformer.maxAbs.toArray.map(x => if (x == 0) 1 else x))
        val newData = column.data.map(r => {
          val vec: List[Double] = r match {
            case d: SparseVector => d.toDense.toArray.toList
            case d: DenseVector => d.toArray.toList
            case d: List[Any @unchecked] => d map (_.toString.toDouble)
            case d => throw new IllegalArgumentException(s"Unknown data type for LocalMaxAbsScaler: $d")
          }
          val brz = DataUtils.asBreeze(vec.toArray) / DataUtils.asBreeze(maxAbsUnzero.toArray)
          DataUtils.fromBreeze(brz)
        })
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData))
      case None => localData
    }
  }
}

object LocalMaxAbsScalerModel extends LocalModel[MaxAbsScalerModel] {
  override def load(metadata: Metadata, data: Map[String, Any]): MaxAbsScalerModel = {
    val maxAbsList = data("maxAbs").
      asInstanceOf[Map[String, Any]].
      getOrElse("values", List()).
      asInstanceOf[List[Double]].toArray
    val maxAbs = new DenseVector(maxAbsList)

    val constructor = classOf[MaxAbsScalerModel].getDeclaredConstructor(classOf[String], classOf[Vector])
    constructor.setAccessible(true)
    constructor
      .newInstance(metadata.uid, maxAbs)
      .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String])
      .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String])
  }

  override implicit def getTransformer(transformer: MaxAbsScalerModel): LocalTransformer[MaxAbsScalerModel] = new LocalMaxAbsScalerModel(transformer)
} 
开发者ID:Hydrospheredata,项目名称:spark-ml-serving,代码行数:46,代码来源:LocalMaxAbsScalerModel.scala


示例3: LocalStandardScalerModel

//设置package包名称以及导入依赖的类
package io.hydrosphere.spark_ml_serving.preprocessors

import io.hydrosphere.spark_ml_serving._
import org.apache.spark.ml.feature.StandardScalerModel
import org.apache.spark.ml.linalg.{DenseVector, SparseVector, Vector}
import org.apache.spark.mllib.feature.{StandardScalerModel => OldStandardScalerModel}
import org.apache.spark.mllib.linalg.{DenseVector => OldDenseVector, SparseVector => OldSparseVector, Vector => OldVector, Vectors => OldVectors}

class LocalStandardScalerModel(override val sparkTransformer: StandardScalerModel) extends LocalTransformer[StandardScalerModel] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val scaler = new OldStandardScalerModel(
          OldVectors.fromML(sparkTransformer.std.asInstanceOf[Vector]),
          OldVectors.fromML(sparkTransformer.mean.asInstanceOf[Vector]),
          sparkTransformer.getWithStd,
          sparkTransformer.getWithMean
        )

        val newData = column.data.map(r => {
          val vec: OldVector = r match {
            case d: Array[Double @unchecked] => OldVectors.dense(d)
            case d: List[Any @unchecked] => OldVectors.dense(d.map(_.toString.toDouble).toArray)
            case d: SparseVector => OldVectors.sparse(d.size, d.indices, d.values)
            case d: DenseVector => OldVectors.dense(d.toArray)
            case d: OldDenseVector => d
            case d: OldSparseVector => d.toDense
            case d => throw new IllegalArgumentException(s"Unknown data type for LocalStandardScaler: $d")
          }
          val result = scaler.transform(vec)
          result.toArray
        })
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData))
      case None => localData
    }
  }
}

object LocalStandardScalerModel extends LocalModel[StandardScalerModel] {
  override def load(metadata: Metadata, data: Map[String, Any]): StandardScalerModel = {
    val constructor = classOf[StandardScalerModel].getDeclaredConstructor(classOf[String], classOf[Vector], classOf[Vector])
    constructor.setAccessible(true)

    val stdVals = data("std").asInstanceOf[Map[String, Any]].getOrElse("values", List()).asInstanceOf[List[Double]].toArray
    val std = new DenseVector(stdVals)

    val meanVals = data("mean").asInstanceOf[Map[String, Any]].getOrElse("values", List()).asInstanceOf[List[Double]].toArray
    val mean = new DenseVector(meanVals)
    constructor
      .newInstance(metadata.uid, std, mean)
      .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String])
      .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String])
  }

  override implicit def getTransformer(transformer: StandardScalerModel): LocalTransformer[StandardScalerModel] = new LocalStandardScalerModel(transformer)
} 
开发者ID:Hydrospheredata,项目名称:spark-ml-serving,代码行数:57,代码来源:LocalStandardScalerModel.scala


示例4: LocalNormalizer

//设置package包名称以及导入依赖的类
package io.hydrosphere.spark_ml_serving.preprocessors

import io.hydrosphere.spark_ml_serving._
import org.apache.spark.ml.feature.Normalizer
import org.apache.spark.ml.linalg.{DenseVector, SparseVector, Vector, Vectors}

class LocalNormalizer(override val sparkTransformer: Normalizer) extends LocalTransformer[Normalizer] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val method = classOf[Normalizer].getMethod("createTransformFunc")
        val newData = column.data.map(r => {
          val vector = r match {
            case x: List[Any] => Vectors.dense(x.map(_.toString.toDouble).toArray)
            case x: SparseVector => x
            case x: DenseVector => x
            case unknown =>
              throw new IllegalArgumentException(s"Unknown data type for LocalMaxAbsScaler: ${unknown.getClass}")
          }
          method.invoke(sparkTransformer).asInstanceOf[Vector => Vector](vector)
        })
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData))
      case None => localData
    }
  }
}

object LocalNormalizer extends LocalModel[Normalizer] {
  override def load(metadata: Metadata, data: Map[String, Any]): Normalizer = {
    new Normalizer(metadata.uid)
      .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String])
      .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String])
      .setP(metadata.paramMap("p").toString.toDouble)
  }

  override implicit def getTransformer(transformer: Normalizer): LocalTransformer[Normalizer] = new LocalNormalizer(transformer)
} 
开发者ID:Hydrospheredata,项目名称:spark-ml-serving,代码行数:38,代码来源:LocalNormalizer.scala


示例5: SitelinkEntry

//设置package包名称以及导入依赖的类
package org.wikimedia.research.recommendation.job.translation

import org.apache.spark.ml.evaluation.RegressionEvaluator
import org.apache.spark.ml.linalg.DenseVector
import org.apache.spark.ml.regression.RandomForestRegressor
import org.apache.spark.sql.{DataFrame, SparkSession}

case class SitelinkEntry(id: String, site: String, title: String)

case class PagecountEntry(site: String, title: String, pageviews: Double)

case class SitelinkPageviewsEntry(id: String, site: String, title: String, pageviews: Double)

case class RankedEntry(id: String, site: String, title: String, pageviews: Double, rank: Double)

object Utils {
  val FEATURES = "features"
  val LABEL = "label"
  val PREDICTION = "prediction"
  val EXISTS = 1.0
  val NOT_EXISTS = 0.0
  val REGRESSOR: RandomForestRegressor = new RandomForestRegressor()
    .setLabelCol(LABEL)
    .setFeaturesCol(FEATURES)
  val EVALUATOR: RegressionEvaluator = new RegressionEvaluator()
    .setLabelCol(LABEL)
    .setPredictionCol(PREDICTION)
    .setMetricName("rmse")

  def getWorkData(spark: SparkSession, data: DataFrame, target: String, exists: Boolean = true): DataFrame = {
    val workData: DataFrame = data.filter(row =>
      row(row.fieldIndex("exists_" + target)) == (if (exists) EXISTS else NOT_EXISTS))

    import spark.implicits._
    val labeledData = workData.map(row =>
      (
        row.getString(row.fieldIndex("id")),
        row.getDouble(row.fieldIndex("rank_" + target)),
        
        new DenseVector((
          (1 until row.fieldIndex("pageviews_" + target)).map(row.getDouble) ++
            (row.fieldIndex("exists_" + target) + 1 until row.length).map(row.getDouble)
          ).toArray)
      )
    ).rdd

    spark.createDataFrame(labeledData).toDF("id", LABEL, FEATURES)
  }
} 
开发者ID:schana,项目名称:recommendation-translation,代码行数:50,代码来源:Utils.scala


示例6: LocalRandomForestClassificationModel

//设置package包名称以及导入依赖的类
package io.hydrosphere.mist.api.ml.classification

import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.classification.{DecisionTreeClassificationModel, RandomForestClassificationModel}
import org.apache.spark.ml.linalg.{DenseVector, Vector, Vectors}

class LocalRandomForestClassificationModel(override val sparkTransformer: RandomForestClassificationModel) extends LocalTransformer[RandomForestClassificationModel] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getFeaturesCol) match {
      case Some(column) =>
        val cls = classOf[RandomForestClassificationModel]
        val rawPredictionCol = LocalDataColumn(sparkTransformer.getRawPredictionCol, column.data.map(f => Vectors.dense(f.asInstanceOf[Array[Double]])).map { vector =>
          val predictRaw = cls.getDeclaredMethod("predictRaw", classOf[Vector])
          predictRaw.invoke(sparkTransformer, vector)
        })
        val probabilityCol = LocalDataColumn(sparkTransformer.getProbabilityCol, rawPredictionCol.data.map(_.asInstanceOf[DenseVector]).map { vector =>
          val raw2probabilityInPlace = cls.getDeclaredMethod("raw2probabilityInPlace", classOf[Vector])
          raw2probabilityInPlace.invoke(sparkTransformer, vector.copy)
        })
        val predictionCol = LocalDataColumn(sparkTransformer.getPredictionCol, rawPredictionCol.data.map(_.asInstanceOf[DenseVector]).map { vector =>
          val raw2prediction = cls.getMethod("raw2prediction", classOf[Vector])
          raw2prediction.invoke(sparkTransformer, vector.copy)
        })
        localData.withColumn(rawPredictionCol)
          .withColumn(probabilityCol)
          .withColumn(predictionCol)
      case None => localData
    }
  }
}

object LocalRandomForestClassificationModel extends LocalModel[RandomForestClassificationModel] {
  override def load(metadata: Metadata, data: Map[String, Any]): RandomForestClassificationModel = {
    val treesMetadata = metadata.paramMap("treesMetadata").asInstanceOf[Map[String, Any]]
    val trees = treesMetadata map { treeKv =>
      val treeMeta = treeKv._2.asInstanceOf[Map[String, Any]]
      val meta = treeMeta("metadata").asInstanceOf[Metadata]
      LocalDecisionTreeClassificationModel.createTree(
        meta,
        data(treeKv._1).asInstanceOf[Map[String, Any]]
      )
    }
    val ctor = classOf[RandomForestClassificationModel].getDeclaredConstructor(classOf[String], classOf[Array[DecisionTreeClassificationModel]], classOf[Int], classOf[Int])
    ctor.setAccessible(true)
    ctor
      .newInstance(
        metadata.uid,
        trees.to[Array],
        metadata.numFeatures.get.asInstanceOf[java.lang.Integer],
        metadata.numClasses.get.asInstanceOf[java.lang.Integer]
      )
      .setFeaturesCol(metadata.paramMap("featuresCol").asInstanceOf[String])
      .setPredictionCol(metadata.paramMap("predictionCol").asInstanceOf[String])
      .setProbabilityCol(metadata.paramMap("probabilityCol").asInstanceOf[String])
  }

  override implicit def getTransformer(transformer: RandomForestClassificationModel): LocalTransformer[RandomForestClassificationModel] = new LocalRandomForestClassificationModel(transformer)
} 
开发者ID:Hydrospheredata,项目名称:mist,代码行数:59,代码来源:LocalRandomForestClassificationModel.scala


示例7: LocalMaxAbsScalerModel

//设置package包名称以及导入依赖的类
package io.hydrosphere.mist.api.ml.preprocessors

import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.feature.MaxAbsScalerModel
import org.apache.spark.ml.linalg.{DenseVector, Vector, Vectors, SparseVector}

class LocalMaxAbsScalerModel(override val sparkTransformer: MaxAbsScalerModel) extends LocalTransformer[MaxAbsScalerModel] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val maxAbsUnzero = Vectors.dense(sparkTransformer.maxAbs.toArray.map(x => if (x == 0) 1 else x))
        val newData = column.data.map(r => {
          val vec: List[Double] = r match {
            case d: SparseVector => d.toDense.toArray.toList
            case d: DenseVector => d.toArray.toList
            case d: List[Any @unchecked] => d map (_.toString.toDouble)
            case d => throw new IllegalArgumentException(s"Unknown data type for LocalMaxAbsScaler: $d")
          }
          val brz = DataUtils.asBreeze(vec.toArray) / DataUtils.asBreeze(maxAbsUnzero.toArray)
          DataUtils.fromBreeze(brz)
        })
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData))
      case None => localData
    }
  }
}

object LocalMaxAbsScalerModel extends LocalModel[MaxAbsScalerModel] {
  override def load(metadata: Metadata, data: Map[String, Any]): MaxAbsScalerModel = {
    val maxAbsList = data("maxAbs").
      asInstanceOf[Map[String, Any]].
      getOrElse("values", List()).
      asInstanceOf[List[Double]].toArray
    val maxAbs = new DenseVector(maxAbsList)

    val constructor = classOf[MaxAbsScalerModel].getDeclaredConstructor(classOf[String], classOf[Vector])
    constructor.setAccessible(true)
    constructor
      .newInstance(metadata.uid, maxAbs)
      .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String])
      .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String])
  }

  override implicit def getTransformer(transformer: MaxAbsScalerModel): LocalTransformer[MaxAbsScalerModel] = new LocalMaxAbsScalerModel(transformer)
} 
开发者ID:Hydrospheredata,项目名称:mist,代码行数:46,代码来源:LocalMaxAbsScalerModel.scala


示例8: LocalStandardScalerModel

//设置package包名称以及导入依赖的类
package io.hydrosphere.mist.api.ml.preprocessors

import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.feature.StandardScalerModel
import org.apache.spark.mllib.feature.{StandardScalerModel => OldStandardScalerModel}
import org.apache.spark.mllib.linalg.{
  Vector => OldVector,
  Vectors => OldVectors,
  SparseVector => OldSparseVector,
  DenseVector => OldDenseVector
}
import org.apache.spark.ml.linalg.{DenseVector, Vector, SparseVector}

class LocalStandardScalerModel(override val sparkTransformer: StandardScalerModel) extends LocalTransformer[StandardScalerModel] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val scaler = new OldStandardScalerModel(
          OldVectors.fromML(sparkTransformer.std.asInstanceOf[Vector]),
          OldVectors.fromML(sparkTransformer.mean.asInstanceOf[Vector]),
          sparkTransformer.getWithStd,
          sparkTransformer.getWithMean
        )

        val newData = column.data.map(r => {
          val vec: OldVector = r match {
            case d: List[Any @unchecked] => OldVectors.dense(d.map(_.toString.toDouble).toArray)
            case d: SparseVector => OldVectors.sparse(d.size, d.indices, d.values)
            case d: DenseVector => OldVectors.dense(d.toArray)
            case d: OldDenseVector => d
            case d: OldSparseVector => d.toDense
            case d => throw new IllegalArgumentException(s"Unknown data type for LocalStandardScaler: $d")
          }
          scaler.transform(vec)
        })
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData))
      case None => localData
    }
  }
}

object LocalStandardScalerModel extends LocalModel[StandardScalerModel] {
  override def load(metadata: Metadata, data: Map[String, Any]): StandardScalerModel = {
    val constructor = classOf[StandardScalerModel].getDeclaredConstructor(classOf[String], classOf[Vector], classOf[Vector])
    constructor.setAccessible(true)

    val stdVals = data("std").asInstanceOf[Map[String, Any]].getOrElse("values", List()).asInstanceOf[List[Double]].toArray
    val std = new DenseVector(stdVals)

    val meanVals = data("mean").asInstanceOf[Map[String, Any]].getOrElse("values", List()).asInstanceOf[List[Double]].toArray
    val mean = new DenseVector(meanVals)
    constructor
      .newInstance(metadata.uid, std, mean)
      .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String])
      .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String])
  }

  override implicit def getTransformer(transformer: StandardScalerModel): LocalTransformer[StandardScalerModel] = new LocalStandardScalerModel(transformer)
} 
开发者ID:Hydrospheredata,项目名称:mist,代码行数:60,代码来源:LocalStandardScalerModel.scala


示例9: LocalNormalizer

//设置package包名称以及导入依赖的类
package io.hydrosphere.mist.api.ml.preprocessors

import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.feature.Normalizer
import org.apache.spark.ml.linalg.{DenseVector, SparseVector, Vector, Vectors}

class LocalNormalizer(override val sparkTransformer: Normalizer) extends LocalTransformer[Normalizer] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val method = classOf[Normalizer].getMethod("createTransformFunc")
        val newData = column.data.map(r => {
          val vector = r match {
            case x: List[Any] => Vectors.dense(x.map(_.toString.toDouble).toArray)
            case x: SparseVector => x
            case x: DenseVector => x
            case unknown =>
              throw new IllegalArgumentException(s"Unknown data type for LocalMaxAbsScaler: ${unknown.getClass}")
          }
          method.invoke(sparkTransformer).asInstanceOf[Vector => Vector](vector)
        })
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData))
      case None => localData
    }
  }
}

object LocalNormalizer extends LocalModel[Normalizer] {
  override def load(metadata: Metadata, data: Map[String, Any]): Normalizer = {
    new Normalizer(metadata.uid)
      .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String])
      .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String])
      .setP(metadata.paramMap("p").toString.toDouble)
  }

  override implicit def getTransformer(transformer: Normalizer): LocalTransformer[Normalizer] = new LocalNormalizer(transformer)
} 
开发者ID:Hydrospheredata,项目名称:mist,代码行数:38,代码来源:LocalNormalizer.scala


示例10: PolynomialExpansionJob

//设置package包名称以及导入依赖的类
import io.hydrosphere.mist.api._
import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.PolynomialExpansion
import org.apache.spark.ml.linalg.{DenseVector, Vectors}
import org.apache.spark.sql.SparkSession

object PolynomialExpansionJob extends MLMistJob {
  def session: SparkSession = SparkSession
    .builder()
    .appName(context.appName)
    .config(context.getConf)
    .getOrCreate()

  def train(savePath: String): Map[String, Any] = {
    val data = Array(
      Vectors.dense(2.0, 1.0),
      Vectors.dense(0.0, 0.0),
      Vectors.dense(3.0, -1.0)
    )
    val df = session.createDataFrame(data.map(Tuple1.apply)).toDF("features")

    val polyExpansion = new PolynomialExpansion()
      .setInputCol("features")
      .setOutputCol("polyFeatures")
      .setDegree(3)

    val pipeline = new Pipeline().setStages(Array(polyExpansion))

    val model = pipeline.fit(df)

    model.write.overwrite().save(savePath)
    Map.empty[String, Any]
  }

  def serve(modelPath: String, features: List[List[Double]]): Map[String, Any] = {
    import LocalPipelineModel._

    val pipeline = PipelineLoader.load(modelPath)
    val data = LocalData(LocalDataColumn("features", features))

    val result = pipeline.transform(data)
    val column = result.column("polyFeatures").map(_.asInstanceOf[LocalDataColumn[DenseVector]])
    val response = column.map(c => c.data.map(_.toArray))

    Map("result" -> response)
  }
} 
开发者ID:Hydrospheredata,项目名称:mist,代码行数:49,代码来源:PolynomialExpansionJob.scala



注:本文中的org.apache.spark.ml.linalg.DenseVector类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Scala ConcurrentModificationException类代码示例发布时间:2022-05-23
下一篇:
Scala AccumulatorV2类代码示例发布时间:2022-05-23
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap