• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Scala SparseVector类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Scala中org.apache.spark.ml.linalg.SparseVector的典型用法代码示例。如果您正苦于以下问题:Scala SparseVector类的具体用法?Scala SparseVector怎么用?Scala SparseVector使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了SparseVector类的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Scala代码示例。

示例1:

//设置package包名称以及导入依赖的类
import java.io.{File, FileOutputStream}
import java.nio.channels.FileChannel
import java.nio.file.{Paths, StandardOpenOption}

import com.indix.ml2npy.Ml2NpyCSR
import org.apache.spark.ml.linalg.{DenseVector, SparseVector, Vector}
import org.scalatest.FlatSpec
import sys.process._


    val nosetestspath="nosetests "
    val pathToTest = getClass.getResource("/python/Npytest.py").getPath+":"

    "ML2NpyFile" should "Convert to CSR matrix" in {

      val csrGen = new Ml2NpyCSR
      val data: Seq[Vector] = Seq(
        new SparseVector(3, Array(0), Array(0.1)),
        new SparseVector(3, Array(1), Array(0.2)),
        new SparseVector(3, Array(2), Array(0.3))
      )
      val labels = Seq(
        new DenseVector(Array(0, 1)),
        new DenseVector(Array(1, 0)),
        new DenseVector(Array(1, 0))
      )
      data.zip(labels).foreach(tup => csrGen.addRecord(tup._1, tup._2))
      val fos = new FileOutputStream(new File("/tmp/data.npz"))
      fos.write(csrGen.getBytes)
      fos.close()

      val command=nosetestspath + pathToTest+"test_5"
      val response=command.!
      assert(response==0)
    }
} 
开发者ID:indix,项目名称:ml2npy,代码行数:37,代码来源:Ml2NpyCSRSpec.scala


示例2: LocalMaxAbsScalerModel

//设置package包名称以及导入依赖的类
package io.hydrosphere.spark_ml_serving.preprocessors

import io.hydrosphere.spark_ml_serving._
import org.apache.spark.ml.feature.MaxAbsScalerModel
import org.apache.spark.ml.linalg.{DenseVector, SparseVector, Vector, Vectors}

class LocalMaxAbsScalerModel(override val sparkTransformer: MaxAbsScalerModel) extends LocalTransformer[MaxAbsScalerModel] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val maxAbsUnzero = Vectors.dense(sparkTransformer.maxAbs.toArray.map(x => if (x == 0) 1 else x))
        val newData = column.data.map(r => {
          val vec: List[Double] = r match {
            case d: SparseVector => d.toDense.toArray.toList
            case d: DenseVector => d.toArray.toList
            case d: List[Any @unchecked] => d map (_.toString.toDouble)
            case d => throw new IllegalArgumentException(s"Unknown data type for LocalMaxAbsScaler: $d")
          }
          val brz = DataUtils.asBreeze(vec.toArray) / DataUtils.asBreeze(maxAbsUnzero.toArray)
          DataUtils.fromBreeze(brz)
        })
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData))
      case None => localData
    }
  }
}

object LocalMaxAbsScalerModel extends LocalModel[MaxAbsScalerModel] {
  override def load(metadata: Metadata, data: Map[String, Any]): MaxAbsScalerModel = {
    val maxAbsList = data("maxAbs").
      asInstanceOf[Map[String, Any]].
      getOrElse("values", List()).
      asInstanceOf[List[Double]].toArray
    val maxAbs = new DenseVector(maxAbsList)

    val constructor = classOf[MaxAbsScalerModel].getDeclaredConstructor(classOf[String], classOf[Vector])
    constructor.setAccessible(true)
    constructor
      .newInstance(metadata.uid, maxAbs)
      .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String])
      .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String])
  }

  override implicit def getTransformer(transformer: MaxAbsScalerModel): LocalTransformer[MaxAbsScalerModel] = new LocalMaxAbsScalerModel(transformer)
} 
开发者ID:Hydrospheredata,项目名称:spark-ml-serving,代码行数:46,代码来源:LocalMaxAbsScalerModel.scala


示例3: LocalStandardScalerModel

//设置package包名称以及导入依赖的类
package io.hydrosphere.spark_ml_serving.preprocessors

import io.hydrosphere.spark_ml_serving._
import org.apache.spark.ml.feature.StandardScalerModel
import org.apache.spark.ml.linalg.{DenseVector, SparseVector, Vector}
import org.apache.spark.mllib.feature.{StandardScalerModel => OldStandardScalerModel}
import org.apache.spark.mllib.linalg.{DenseVector => OldDenseVector, SparseVector => OldSparseVector, Vector => OldVector, Vectors => OldVectors}

class LocalStandardScalerModel(override val sparkTransformer: StandardScalerModel) extends LocalTransformer[StandardScalerModel] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val scaler = new OldStandardScalerModel(
          OldVectors.fromML(sparkTransformer.std.asInstanceOf[Vector]),
          OldVectors.fromML(sparkTransformer.mean.asInstanceOf[Vector]),
          sparkTransformer.getWithStd,
          sparkTransformer.getWithMean
        )

        val newData = column.data.map(r => {
          val vec: OldVector = r match {
            case d: Array[Double @unchecked] => OldVectors.dense(d)
            case d: List[Any @unchecked] => OldVectors.dense(d.map(_.toString.toDouble).toArray)
            case d: SparseVector => OldVectors.sparse(d.size, d.indices, d.values)
            case d: DenseVector => OldVectors.dense(d.toArray)
            case d: OldDenseVector => d
            case d: OldSparseVector => d.toDense
            case d => throw new IllegalArgumentException(s"Unknown data type for LocalStandardScaler: $d")
          }
          val result = scaler.transform(vec)
          result.toArray
        })
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData))
      case None => localData
    }
  }
}

object LocalStandardScalerModel extends LocalModel[StandardScalerModel] {
  override def load(metadata: Metadata, data: Map[String, Any]): StandardScalerModel = {
    val constructor = classOf[StandardScalerModel].getDeclaredConstructor(classOf[String], classOf[Vector], classOf[Vector])
    constructor.setAccessible(true)

    val stdVals = data("std").asInstanceOf[Map[String, Any]].getOrElse("values", List()).asInstanceOf[List[Double]].toArray
    val std = new DenseVector(stdVals)

    val meanVals = data("mean").asInstanceOf[Map[String, Any]].getOrElse("values", List()).asInstanceOf[List[Double]].toArray
    val mean = new DenseVector(meanVals)
    constructor
      .newInstance(metadata.uid, std, mean)
      .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String])
      .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String])
  }

  override implicit def getTransformer(transformer: StandardScalerModel): LocalTransformer[StandardScalerModel] = new LocalStandardScalerModel(transformer)
} 
开发者ID:Hydrospheredata,项目名称:spark-ml-serving,代码行数:57,代码来源:LocalStandardScalerModel.scala


示例4: LocalNormalizer

//设置package包名称以及导入依赖的类
package io.hydrosphere.spark_ml_serving.preprocessors

import io.hydrosphere.spark_ml_serving._
import org.apache.spark.ml.feature.Normalizer
import org.apache.spark.ml.linalg.{DenseVector, SparseVector, Vector, Vectors}

class LocalNormalizer(override val sparkTransformer: Normalizer) extends LocalTransformer[Normalizer] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val method = classOf[Normalizer].getMethod("createTransformFunc")
        val newData = column.data.map(r => {
          val vector = r match {
            case x: List[Any] => Vectors.dense(x.map(_.toString.toDouble).toArray)
            case x: SparseVector => x
            case x: DenseVector => x
            case unknown =>
              throw new IllegalArgumentException(s"Unknown data type for LocalMaxAbsScaler: ${unknown.getClass}")
          }
          method.invoke(sparkTransformer).asInstanceOf[Vector => Vector](vector)
        })
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData))
      case None => localData
    }
  }
}

object LocalNormalizer extends LocalModel[Normalizer] {
  override def load(metadata: Metadata, data: Map[String, Any]): Normalizer = {
    new Normalizer(metadata.uid)
      .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String])
      .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String])
      .setP(metadata.paramMap("p").toString.toDouble)
  }

  override implicit def getTransformer(transformer: Normalizer): LocalTransformer[Normalizer] = new LocalNormalizer(transformer)
} 
开发者ID:Hydrospheredata,项目名称:spark-ml-serving,代码行数:38,代码来源:LocalNormalizer.scala


示例5: LocalMaxAbsScalerModel

//设置package包名称以及导入依赖的类
package io.hydrosphere.mist.api.ml.preprocessors

import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.feature.MaxAbsScalerModel
import org.apache.spark.ml.linalg.{DenseVector, Vector, Vectors, SparseVector}

class LocalMaxAbsScalerModel(override val sparkTransformer: MaxAbsScalerModel) extends LocalTransformer[MaxAbsScalerModel] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val maxAbsUnzero = Vectors.dense(sparkTransformer.maxAbs.toArray.map(x => if (x == 0) 1 else x))
        val newData = column.data.map(r => {
          val vec: List[Double] = r match {
            case d: SparseVector => d.toDense.toArray.toList
            case d: DenseVector => d.toArray.toList
            case d: List[Any @unchecked] => d map (_.toString.toDouble)
            case d => throw new IllegalArgumentException(s"Unknown data type for LocalMaxAbsScaler: $d")
          }
          val brz = DataUtils.asBreeze(vec.toArray) / DataUtils.asBreeze(maxAbsUnzero.toArray)
          DataUtils.fromBreeze(brz)
        })
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData))
      case None => localData
    }
  }
}

object LocalMaxAbsScalerModel extends LocalModel[MaxAbsScalerModel] {
  override def load(metadata: Metadata, data: Map[String, Any]): MaxAbsScalerModel = {
    val maxAbsList = data("maxAbs").
      asInstanceOf[Map[String, Any]].
      getOrElse("values", List()).
      asInstanceOf[List[Double]].toArray
    val maxAbs = new DenseVector(maxAbsList)

    val constructor = classOf[MaxAbsScalerModel].getDeclaredConstructor(classOf[String], classOf[Vector])
    constructor.setAccessible(true)
    constructor
      .newInstance(metadata.uid, maxAbs)
      .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String])
      .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String])
  }

  override implicit def getTransformer(transformer: MaxAbsScalerModel): LocalTransformer[MaxAbsScalerModel] = new LocalMaxAbsScalerModel(transformer)
} 
开发者ID:Hydrospheredata,项目名称:mist,代码行数:46,代码来源:LocalMaxAbsScalerModel.scala


示例6: LocalStandardScalerModel

//设置package包名称以及导入依赖的类
package io.hydrosphere.mist.api.ml.preprocessors

import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.feature.StandardScalerModel
import org.apache.spark.mllib.feature.{StandardScalerModel => OldStandardScalerModel}
import org.apache.spark.mllib.linalg.{
  Vector => OldVector,
  Vectors => OldVectors,
  SparseVector => OldSparseVector,
  DenseVector => OldDenseVector
}
import org.apache.spark.ml.linalg.{DenseVector, Vector, SparseVector}

class LocalStandardScalerModel(override val sparkTransformer: StandardScalerModel) extends LocalTransformer[StandardScalerModel] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val scaler = new OldStandardScalerModel(
          OldVectors.fromML(sparkTransformer.std.asInstanceOf[Vector]),
          OldVectors.fromML(sparkTransformer.mean.asInstanceOf[Vector]),
          sparkTransformer.getWithStd,
          sparkTransformer.getWithMean
        )

        val newData = column.data.map(r => {
          val vec: OldVector = r match {
            case d: List[Any @unchecked] => OldVectors.dense(d.map(_.toString.toDouble).toArray)
            case d: SparseVector => OldVectors.sparse(d.size, d.indices, d.values)
            case d: DenseVector => OldVectors.dense(d.toArray)
            case d: OldDenseVector => d
            case d: OldSparseVector => d.toDense
            case d => throw new IllegalArgumentException(s"Unknown data type for LocalStandardScaler: $d")
          }
          scaler.transform(vec)
        })
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData))
      case None => localData
    }
  }
}

object LocalStandardScalerModel extends LocalModel[StandardScalerModel] {
  override def load(metadata: Metadata, data: Map[String, Any]): StandardScalerModel = {
    val constructor = classOf[StandardScalerModel].getDeclaredConstructor(classOf[String], classOf[Vector], classOf[Vector])
    constructor.setAccessible(true)

    val stdVals = data("std").asInstanceOf[Map[String, Any]].getOrElse("values", List()).asInstanceOf[List[Double]].toArray
    val std = new DenseVector(stdVals)

    val meanVals = data("mean").asInstanceOf[Map[String, Any]].getOrElse("values", List()).asInstanceOf[List[Double]].toArray
    val mean = new DenseVector(meanVals)
    constructor
      .newInstance(metadata.uid, std, mean)
      .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String])
      .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String])
  }

  override implicit def getTransformer(transformer: StandardScalerModel): LocalTransformer[StandardScalerModel] = new LocalStandardScalerModel(transformer)
} 
开发者ID:Hydrospheredata,项目名称:mist,代码行数:60,代码来源:LocalStandardScalerModel.scala


示例7: LocalNormalizer

//设置package包名称以及导入依赖的类
package io.hydrosphere.mist.api.ml.preprocessors

import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.feature.Normalizer
import org.apache.spark.ml.linalg.{DenseVector, SparseVector, Vector, Vectors}

class LocalNormalizer(override val sparkTransformer: Normalizer) extends LocalTransformer[Normalizer] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val method = classOf[Normalizer].getMethod("createTransformFunc")
        val newData = column.data.map(r => {
          val vector = r match {
            case x: List[Any] => Vectors.dense(x.map(_.toString.toDouble).toArray)
            case x: SparseVector => x
            case x: DenseVector => x
            case unknown =>
              throw new IllegalArgumentException(s"Unknown data type for LocalMaxAbsScaler: ${unknown.getClass}")
          }
          method.invoke(sparkTransformer).asInstanceOf[Vector => Vector](vector)
        })
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData))
      case None => localData
    }
  }
}

object LocalNormalizer extends LocalModel[Normalizer] {
  override def load(metadata: Metadata, data: Map[String, Any]): Normalizer = {
    new Normalizer(metadata.uid)
      .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String])
      .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String])
      .setP(metadata.paramMap("p").toString.toDouble)
  }

  override implicit def getTransformer(transformer: Normalizer): LocalTransformer[Normalizer] = new LocalNormalizer(transformer)
} 
开发者ID:Hydrospheredata,项目名称:mist,代码行数:38,代码来源:LocalNormalizer.scala



注:本文中的org.apache.spark.ml.linalg.SparseVector类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Scala Request类代码示例发布时间:2022-05-23
下一篇:
Scala BloomFilter类代码示例发布时间:2022-05-23
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap