• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Scala Vectors类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Scala中org.apache.spark.ml.linalg.Vectors的典型用法代码示例。如果您正苦于以下问题:Scala Vectors类的具体用法?Scala Vectors怎么用?Scala Vectors使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了Vectors类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Scala代码示例。

示例1: PCASampleDemo

//设置package包名称以及导入依赖的类
package com.chapter11.SparkMachineLearning

import org.apache.spark.ml.feature.PCA
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.sql.SparkSession

object PCASampleDemo {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder()
      .master("local[4]")
      .appName("PCAExample")
      .getOrCreate()

    val data = Array(
       Vectors.dense(3.5, 2.0, 5.0, 6.3, 5.60, 2.4),
       Vectors.dense(4.40, 0.10, 3.0, 9.0, 7.0, 8.75),
       Vectors.dense(3.20, 2.40, 0.0, 6.0, 7.4, 3.34)
    )
    val df = spark.createDataFrame(data.map(Tuple1.apply)).toDF("features")
    df.show(false)

    val pca = new PCA()
      .setInputCol("features")
      .setOutputCol("pcaFeatures")
      .setK(4)
      .fit(df)

    val result = pca.transform(df).select("pcaFeatures")
    result.show(false)

    spark.stop()
  }
} 
开发者ID:PacktPublishing,项目名称:Scala-and-Spark-for-Big-Data-Analytics,代码行数:35,代码来源:PCAExample.scala


示例2: TestLogisticRegression

//设置package包名称以及导入依赖的类
package com.zobot.ai.spark

import breeze.linalg.Matrix
import com.zobot.ai.spark.helpers.LogisticRegressionHelpers
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.linalg.Vectors
import org.specs2.Specification

class TestLogisticRegression extends Specification {
  def is = s2"""
                Logistic Regression
                  can train model $testTrainLogisticRegressionModel
      """

  val context = new Context().spark

  def testTrainLogisticRegressionModel = {
    val model = LogisticRegressionHelpers.trainModel(new LogisticRegression, context.createDataFrame(Seq(
      (1.0, Vectors.dense(0.0, 1.1, 0.1)),
      (0.0, Vectors.dense(2.0, 1.0, -1.0)),
      (0.0, Vectors.dense(2.0, 1.3, 1.0)),
      (1.0, Vectors.dense(0.0, 1.2, -0.5))
    )).toDF("label", "features"))

    model.coefficientMatrix.toString().must_==("-19.086478256375067  16.278339464295065  -2.494930802874724  ")
  }
} 
开发者ID:BecauseNoReason,项目名称:zobot,代码行数:28,代码来源:TestLogisticRegression.scala


示例3: LDA

//设置package包名称以及导入依赖的类
package com.databricks.spark.sql.perf.mllib.clustering

import scala.collection.mutable.{HashMap => MHashMap}

import org.apache.commons.math3.random.Well19937c

import org.apache.spark.ml.Estimator
import org.apache.spark.ml
import org.apache.spark.rdd.RDD
import org.apache.spark.sql._
import org.apache.spark.ml.linalg.{Vector, Vectors}

import com.databricks.spark.sql.perf.mllib.{BenchmarkAlgorithm, MLBenchContext, TestFromTraining}
import com.databricks.spark.sql.perf.mllib.OptionImplicits._


object LDA extends BenchmarkAlgorithm with TestFromTraining {
  // The LDA model is package private, no need to expose it.

  override def trainingDataSet(ctx: MLBenchContext): DataFrame = {
    import ctx.params._
    val rdd = ctx.sqlContext.sparkContext.parallelize(
      0L until numExamples,
      numPartitions
    )
    val seed: Int = randomSeed
    val docLength = ldaDocLength.get
    val numVocab = ldaNumVocabulary.get
    val data: RDD[(Long, Vector)] = rdd.mapPartitionsWithIndex { (idx, partition) =>
      val rng = new Well19937c(seed ^ idx)
      partition.map { docIndex =>
        var currentSize = 0
        val entries = MHashMap[Int, Int]()
        while (currentSize < docLength) {
          val index = rng.nextInt(numVocab)
          entries(index) = entries.getOrElse(index, 0) + 1
          currentSize += 1
        }

        val iter = entries.toSeq.map(v => (v._1, v._2.toDouble))
        (docIndex, Vectors.sparse(numVocab, iter))
      }
    }
    ctx.sqlContext.createDataFrame(data).toDF("docIndex", "features")
  }

  override def getEstimator(ctx: MLBenchContext): Estimator[_] = {
    import ctx.params._
    new ml.clustering.LDA()
      .setK(k)
      .setSeed(randomSeed.toLong)
      .setMaxIter(maxIter)
      .setOptimizer(optimizer)
  }

  // TODO(?) add a scoring method here.
} 
开发者ID:summerDG,项目名称:spark-sql-perf,代码行数:58,代码来源:LDA.scala


示例4: LogisticRegression

//设置package包名称以及导入依赖的类
package com.databricks.spark.sql.perf.mllib.classification

import com.databricks.spark.sql.perf.mllib.OptionImplicits._
import com.databricks.spark.sql.perf.mllib._
import com.databricks.spark.sql.perf.mllib.data.DataGenerator

import org.apache.spark.ml.evaluation.{Evaluator, MulticlassClassificationEvaluator}
import org.apache.spark.ml.{Estimator, ModelBuilder, Transformer}
import org.apache.spark.ml
import org.apache.spark.ml.linalg.Vectors


object LogisticRegression extends BenchmarkAlgorithm
  with TestFromTraining with TrainingSetFromTransformer with ScoringWithEvaluator {

  override protected def initialData(ctx: MLBenchContext) = {
    import ctx.params._
    DataGenerator.generateContinuousFeatures(
      ctx.sqlContext,
      numExamples,
      ctx.seed(),
      numPartitions,
      numFeatures)
  }

  override protected def trueModel(ctx: MLBenchContext): Transformer = {
    val rng = ctx.newGenerator()
    val coefficients =
      Vectors.dense(Array.fill[Double](ctx.params.numFeatures)(2 * rng.nextDouble() - 1))
    // Small intercept to prevent some skew in the data.
    val intercept = 0.01 * (2 * rng.nextDouble - 1)
    ModelBuilder.newLogisticRegressionModel(coefficients, intercept)
  }

  override def getEstimator(ctx: MLBenchContext): Estimator[_] = {
    import ctx.params._
    new ml.classification.LogisticRegression()
      .setTol(tol)
      .setMaxIter(maxIter)
      .setRegParam(regParam)
  }

  override protected def evaluator(ctx: MLBenchContext): Evaluator =
    new MulticlassClassificationEvaluator()
} 
开发者ID:summerDG,项目名称:spark-sql-perf,代码行数:46,代码来源:LogisticRegression.scala


示例5: GLMRegression

//设置package包名称以及导入依赖的类
package com.databricks.spark.sql.perf.mllib.regression

import org.apache.spark.ml.evaluation.{Evaluator, RegressionEvaluator}
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.regression.GeneralizedLinearRegression
import org.apache.spark.ml.{Estimator, ModelBuilder, Transformer}

import com.databricks.spark.sql.perf.mllib.OptionImplicits._
import com.databricks.spark.sql.perf.mllib._
import com.databricks.spark.sql.perf.mllib.data.DataGenerator


object GLMRegression extends BenchmarkAlgorithm with TestFromTraining with
  TrainingSetFromTransformer with ScoringWithEvaluator {

  override protected def initialData(ctx: MLBenchContext) = {
    import ctx.params._
    DataGenerator.generateContinuousFeatures(
      ctx.sqlContext,
      numExamples,
      ctx.seed(),
      numPartitions,
      numFeatures)
  }

  override protected def trueModel(ctx: MLBenchContext): Transformer = {
    import ctx.params._
    val rng = ctx.newGenerator()
    val coefficients =
      Vectors.dense(Array.fill[Double](ctx.params.numFeatures)(2 * rng.nextDouble() - 1))
    // Small intercept to prevent some skew in the data.
    val intercept = 0.01 * (2 * rng.nextDouble - 1)
    val m = ModelBuilder.newGLR(coefficients, intercept)
    m.set(m.link, link.get)
    m.set(m.family, family.get)
    m
  }

  override def getEstimator(ctx: MLBenchContext): Estimator[_] = {
    import ctx.params._
    new GeneralizedLinearRegression()
      .setLink(link)
      .setFamily(family)
      .setRegParam(regParam)
      .setMaxIter(maxIter)
      .setTol(tol)
  }

  override protected def evaluator(ctx: MLBenchContext): Evaluator =
    new RegressionEvaluator()
} 
开发者ID:summerDG,项目名称:spark-sql-perf,代码行数:52,代码来源:GLMRegression.scala


示例6: LinearRegression

//设置package包名称以及导入依赖的类
package com.databricks.spark.sql.perf.mllib.regression

import org.apache.spark.ml
import org.apache.spark.ml.evaluation.{Evaluator, RegressionEvaluator}
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.{Estimator, ModelBuilder, Transformer}

import com.databricks.spark.sql.perf.mllib.OptionImplicits._
import com.databricks.spark.sql.perf.mllib._
import com.databricks.spark.sql.perf.mllib.data.DataGenerator


object LinearRegression extends BenchmarkAlgorithm with TestFromTraining with
  TrainingSetFromTransformer with ScoringWithEvaluator {

  override protected def initialData(ctx: MLBenchContext) = {
    import ctx.params._
    DataGenerator.generateContinuousFeatures(
      ctx.sqlContext,
      numExamples,
      ctx.seed(),
      numPartitions,
      numFeatures)
  }

  override protected def trueModel(ctx: MLBenchContext): Transformer = {
    val rng = ctx.newGenerator()
    val coefficients =
      Vectors.dense(Array.fill[Double](ctx.params.numFeatures)(2 * rng.nextDouble() - 1))
    // Small intercept to prevent some skew in the data.
    val intercept = 0.01 * (2 * rng.nextDouble - 1)
    ModelBuilder.newLinearRegressionModel(coefficients, intercept)
  }

  override def getEstimator(ctx: MLBenchContext): Estimator[_] = {
    import ctx.params._
    new ml.regression.LinearRegression()
      .setSolver("l-bfgs")
      .setRegParam(regParam)
      .setMaxIter(maxIter)
      .setTol(tol)
  }

  override protected def evaluator(ctx: MLBenchContext): Evaluator =
    new RegressionEvaluator()
} 
开发者ID:summerDG,项目名称:spark-sql-perf,代码行数:47,代码来源:LinearRegression.scala


示例7: LocalDecisionTreeClassificationModel

//设置package包名称以及导入依赖的类
package io.hydrosphere.spark_ml_serving.classification

import io.hydrosphere.spark_ml_serving._
import org.apache.spark.ml.classification.DecisionTreeClassificationModel
import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.ml.tree.Node

class LocalDecisionTreeClassificationModel(override val sparkTransformer: DecisionTreeClassificationModel) extends LocalTransformer[DecisionTreeClassificationModel] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getFeaturesCol) match {
      case Some(column) =>
        val method = classOf[DecisionTreeClassificationModel].getMethod("predict", classOf[Vector])
        method.setAccessible(true)
        val newColumn = LocalDataColumn(sparkTransformer.getPredictionCol, column.data.map(f => Vectors.dense(f.asInstanceOf[Array[Double]])).map { vector =>
          method.invoke(sparkTransformer, vector).asInstanceOf[Double]
        })
        localData.withColumn(newColumn)
      case None => localData
    }
  }
}

object LocalDecisionTreeClassificationModel extends LocalModel[DecisionTreeClassificationModel] {
  override def load(metadata: Metadata, data: Map[String, Any]): DecisionTreeClassificationModel = {
    createTree(metadata, data)
  }

  def createTree(metadata: Metadata, data: Map[String, Any]): DecisionTreeClassificationModel = {
    val ctor = classOf[DecisionTreeClassificationModel].getDeclaredConstructor(classOf[String], classOf[Node], classOf[Int], classOf[Int])
    ctor.setAccessible(true)
    val inst = ctor.newInstance(
      metadata.uid,
      DataUtils.createNode(0, metadata, data),
      metadata.numFeatures.get.asInstanceOf[java.lang.Integer],
      metadata.numClasses.get.asInstanceOf[java.lang.Integer]
    )
    inst
      .setFeaturesCol(metadata.paramMap("featuresCol").asInstanceOf[String])
      .setPredictionCol(metadata.paramMap("predictionCol").asInstanceOf[String])
      .setProbabilityCol(metadata.paramMap("probabilityCol").asInstanceOf[String])
      .setRawPredictionCol(metadata.paramMap("rawPredictionCol").asInstanceOf[String])
    inst
      .set(inst.seed, metadata.paramMap("seed").toString.toLong)
      .set(inst.cacheNodeIds, metadata.paramMap("cacheNodeIds").toString.toBoolean)
      .set(inst.maxDepth, metadata.paramMap("maxDepth").toString.toInt)
      .set(inst.labelCol, metadata.paramMap("labelCol").toString)
      .set(inst.minInfoGain, metadata.paramMap("minInfoGain").toString.toDouble)
      .set(inst.checkpointInterval, metadata.paramMap("checkpointInterval").toString.toInt)
      .set(inst.minInstancesPerNode, metadata.paramMap("minInstancesPerNode").toString.toInt)
      .set(inst.maxMemoryInMB, metadata.paramMap("maxMemoryInMB").toString.toInt)
      .set(inst.maxBins, metadata.paramMap("maxBins").toString.toInt)
      .set(inst.impurity, metadata.paramMap("impurity").toString)
  }

  override implicit def getTransformer(transformer: DecisionTreeClassificationModel): LocalTransformer[DecisionTreeClassificationModel] = new LocalDecisionTreeClassificationModel(transformer)
} 
开发者ID:Hydrospheredata,项目名称:spark-ml-serving,代码行数:57,代码来源:LocalDecisionTreeClassificationModel.scala


示例8: LocalMultilayerPerceptronClassificationModel

//设置package包名称以及导入依赖的类
package io.hydrosphere.spark_ml_serving.classification

import io.hydrosphere.spark_ml_serving._
import org.apache.spark.ml.classification.MultilayerPerceptronClassificationModel
import org.apache.spark.ml.linalg.{Vector, Vectors}

class LocalMultilayerPerceptronClassificationModel(override val sparkTransformer: MultilayerPerceptronClassificationModel) extends LocalTransformer[MultilayerPerceptronClassificationModel] {

  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getFeaturesCol) match {
      case Some(column) =>
        val method = classOf[MultilayerPerceptronClassificationModel].getMethod("predict", classOf[Vector])
        method.setAccessible(true)
        val newColumn = LocalDataColumn(sparkTransformer.getPredictionCol, column.data map { feature =>
          method.invoke(sparkTransformer, feature.asInstanceOf[Vector]).asInstanceOf[Double]
        })
        localData.withColumn(newColumn)
      case None => localData
    }
  }
}

object LocalMultilayerPerceptronClassificationModel extends LocalModel[MultilayerPerceptronClassificationModel] {
  override def load(metadata: Metadata, data: Map[String, Any]): MultilayerPerceptronClassificationModel = {
    val constructor = classOf[MultilayerPerceptronClassificationModel].getDeclaredConstructor(classOf[String], classOf[Array[Int]], classOf[Vector])
    constructor.setAccessible(true)
    constructor
      .newInstance(metadata.uid, data("layers").asInstanceOf[List[Int]].to[Array], Vectors.dense(data("weights").asInstanceOf[Map[String, Any]]("values").asInstanceOf[List[Double]].toArray))
      .setFeaturesCol(metadata.paramMap("featuresCol").asInstanceOf[String])
      .setPredictionCol(metadata.paramMap("predictionCol").asInstanceOf[String])
  }

  override implicit def getTransformer(transformer: MultilayerPerceptronClassificationModel): LocalTransformer[MultilayerPerceptronClassificationModel] = new LocalMultilayerPerceptronClassificationModel(transformer)
} 
开发者ID:Hydrospheredata,项目名称:spark-ml-serving,代码行数:35,代码来源:LocalMultilayerPerceptronClassificationModel.scala


示例9: LocalPolynomialExpansion

//设置package包名称以及导入依赖的类
package io.hydrosphere.spark_ml_serving.preprocessors

import io.hydrosphere.spark_ml_serving._
import org.apache.spark.ml.feature.PolynomialExpansion
import org.apache.spark.ml.linalg.{Vector, Vectors}

class LocalPolynomialExpansion(override val sparkTransformer: PolynomialExpansion) extends LocalTransformer[PolynomialExpansion] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val method = classOf[PolynomialExpansion].getMethod("createTransformFunc")
        val newData = column.data.map(r => {
          val row = r.asInstanceOf[List[Any]].map(_.toString.toDouble).toArray
          val vector: Vector = Vectors.dense(row)
          method.invoke(sparkTransformer).asInstanceOf[Vector => Vector](vector)
        })
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData))
      case None => localData
    }
  }
}

object LocalPolynomialExpansion extends LocalModel[PolynomialExpansion] {
  override def load(metadata: Metadata, data: Map[String, Any]): PolynomialExpansion = {
    new PolynomialExpansion(metadata.uid)
      .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String])
      .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String])
      .setDegree(metadata.paramMap("degree").asInstanceOf[Number].intValue())
  }

  override implicit def getTransformer(transformer: PolynomialExpansion): LocalTransformer[PolynomialExpansion] = new LocalPolynomialExpansion(transformer)
} 
开发者ID:Hydrospheredata,项目名称:spark-ml-serving,代码行数:33,代码来源:LocalPolynomialExpansion.scala


示例10: LocalMaxAbsScalerModel

//设置package包名称以及导入依赖的类
package io.hydrosphere.spark_ml_serving.preprocessors

import io.hydrosphere.spark_ml_serving._
import org.apache.spark.ml.feature.MaxAbsScalerModel
import org.apache.spark.ml.linalg.{DenseVector, SparseVector, Vector, Vectors}

class LocalMaxAbsScalerModel(override val sparkTransformer: MaxAbsScalerModel) extends LocalTransformer[MaxAbsScalerModel] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val maxAbsUnzero = Vectors.dense(sparkTransformer.maxAbs.toArray.map(x => if (x == 0) 1 else x))
        val newData = column.data.map(r => {
          val vec: List[Double] = r match {
            case d: SparseVector => d.toDense.toArray.toList
            case d: DenseVector => d.toArray.toList
            case d: List[Any @unchecked] => d map (_.toString.toDouble)
            case d => throw new IllegalArgumentException(s"Unknown data type for LocalMaxAbsScaler: $d")
          }
          val brz = DataUtils.asBreeze(vec.toArray) / DataUtils.asBreeze(maxAbsUnzero.toArray)
          DataUtils.fromBreeze(brz)
        })
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData))
      case None => localData
    }
  }
}

object LocalMaxAbsScalerModel extends LocalModel[MaxAbsScalerModel] {
  override def load(metadata: Metadata, data: Map[String, Any]): MaxAbsScalerModel = {
    val maxAbsList = data("maxAbs").
      asInstanceOf[Map[String, Any]].
      getOrElse("values", List()).
      asInstanceOf[List[Double]].toArray
    val maxAbs = new DenseVector(maxAbsList)

    val constructor = classOf[MaxAbsScalerModel].getDeclaredConstructor(classOf[String], classOf[Vector])
    constructor.setAccessible(true)
    constructor
      .newInstance(metadata.uid, maxAbs)
      .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String])
      .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String])
  }

  override implicit def getTransformer(transformer: MaxAbsScalerModel): LocalTransformer[MaxAbsScalerModel] = new LocalMaxAbsScalerModel(transformer)
} 
开发者ID:Hydrospheredata,项目名称:spark-ml-serving,代码行数:46,代码来源:LocalMaxAbsScalerModel.scala


示例11: LocalDCT

//设置package包名称以及导入依赖的类
package io.hydrosphere.spark_ml_serving.preprocessors

import io.hydrosphere.spark_ml_serving._
import org.apache.spark.ml.feature.DCT
import org.apache.spark.ml.linalg.{Vector, Vectors}

class LocalDCT(override val sparkTransformer: DCT) extends LocalTransformer[DCT] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val method = classOf[DCT].getMethod("createTransformFunc")
        val newData = column.data.map(r => {
          val row = r.asInstanceOf[List[Any]].map(_.toString.toDouble).toArray
          val vector: Vector = Vectors.dense(row)
          method.invoke(sparkTransformer).asInstanceOf[Vector => Vector](vector)
        })
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData))
      case None => localData
    }
  }
}

object LocalDCT extends LocalModel[DCT] {
  override def load(metadata: Metadata, data: Map[String, Any]): DCT = {
    new DCT(metadata.uid)
      .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String])
      .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String])
      .setInverse(metadata.paramMap("inverse").asInstanceOf[Boolean])
  }

  override implicit def getTransformer(transformer: DCT): LocalTransformer[DCT] = new LocalDCT(transformer)
} 
开发者ID:Hydrospheredata,项目名称:spark-ml-serving,代码行数:33,代码来源:LocalDCT.scala


示例12: LocalNormalizer

//设置package包名称以及导入依赖的类
package io.hydrosphere.spark_ml_serving.preprocessors

import io.hydrosphere.spark_ml_serving._
import org.apache.spark.ml.feature.Normalizer
import org.apache.spark.ml.linalg.{DenseVector, SparseVector, Vector, Vectors}

class LocalNormalizer(override val sparkTransformer: Normalizer) extends LocalTransformer[Normalizer] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val method = classOf[Normalizer].getMethod("createTransformFunc")
        val newData = column.data.map(r => {
          val vector = r match {
            case x: List[Any] => Vectors.dense(x.map(_.toString.toDouble).toArray)
            case x: SparseVector => x
            case x: DenseVector => x
            case unknown =>
              throw new IllegalArgumentException(s"Unknown data type for LocalMaxAbsScaler: ${unknown.getClass}")
          }
          method.invoke(sparkTransformer).asInstanceOf[Vector => Vector](vector)
        })
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData))
      case None => localData
    }
  }
}

object LocalNormalizer extends LocalModel[Normalizer] {
  override def load(metadata: Metadata, data: Map[String, Any]): Normalizer = {
    new Normalizer(metadata.uid)
      .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String])
      .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String])
      .setP(metadata.paramMap("p").toString.toDouble)
  }

  override implicit def getTransformer(transformer: Normalizer): LocalTransformer[Normalizer] = new LocalNormalizer(transformer)
} 
开发者ID:Hydrospheredata,项目名称:spark-ml-serving,代码行数:38,代码来源:LocalNormalizer.scala


示例13: LocalDecisionTreeRegressionModel

//设置package包名称以及导入依赖的类
package io.hydrosphere.spark_ml_serving.regression

import io.hydrosphere.spark_ml_serving._
import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.ml.regression.DecisionTreeRegressionModel
import org.apache.spark.ml.tree.Node

class LocalDecisionTreeRegressionModel(override val sparkTransformer: DecisionTreeRegressionModel) extends LocalTransformer[DecisionTreeRegressionModel] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getFeaturesCol) match {
      case Some(column) =>
        val method = classOf[DecisionTreeRegressionModel].getMethod("predict", classOf[Vector])
        method.setAccessible(true)
        val newColumn = LocalDataColumn(sparkTransformer.getPredictionCol, column.data.map(f => Vectors.dense(f.asInstanceOf[Array[Double]])).map { vector =>
          method.invoke(sparkTransformer, vector).asInstanceOf[Double]
        })
        localData.withColumn(newColumn)
      case None => localData
    }
  }
}

object LocalDecisionTreeRegressionModel extends LocalModel[DecisionTreeRegressionModel] {
  override def load(metadata: Metadata, data: Map[String, Any]): DecisionTreeRegressionModel = {
    createTree(metadata, data)
  }

  def createTree(metadata: Metadata, data: Map[String, Any]): DecisionTreeRegressionModel = {
    val ctor = classOf[DecisionTreeRegressionModel].getDeclaredConstructor(classOf[String], classOf[Node], classOf[Int])
    ctor.setAccessible(true)
    val inst = ctor.newInstance(
      metadata.uid,
      DataUtils.createNode(0, metadata, data),
      metadata.numFeatures.get.asInstanceOf[java.lang.Integer]
    )
    inst
      .setFeaturesCol(metadata.paramMap("featuresCol").asInstanceOf[String])
      .setPredictionCol(metadata.paramMap("predictionCol").asInstanceOf[String])
    inst
      .set(inst.seed, metadata.paramMap("seed").toString.toLong)
      .set(inst.cacheNodeIds, metadata.paramMap("cacheNodeIds").toString.toBoolean)
      .set(inst.maxDepth, metadata.paramMap("maxDepth").toString.toInt)
      .set(inst.labelCol, metadata.paramMap("labelCol").toString)
      .set(inst.minInfoGain, metadata.paramMap("minInfoGain").toString.toDouble)
      .set(inst.checkpointInterval, metadata.paramMap("checkpointInterval").toString.toInt)
      .set(inst.minInstancesPerNode, metadata.paramMap("minInstancesPerNode").toString.toInt)
      .set(inst.maxMemoryInMB, metadata.paramMap("maxMemoryInMB").toString.toInt)
      .set(inst.maxBins, metadata.paramMap("maxBins").toString.toInt)
      .set(inst.impurity, metadata.paramMap("impurity").toString)
  }

  override implicit def getTransformer(transformer: DecisionTreeRegressionModel): LocalTransformer[DecisionTreeRegressionModel] = new LocalDecisionTreeRegressionModel(transformer)
} 
开发者ID:Hydrospheredata,项目名称:spark-ml-serving,代码行数:54,代码来源:LocalDecisionTreeRegressionModel.scala


示例14: LocalRandomForestRegressionModel

//设置package包名称以及导入依赖的类
package io.hydrosphere.spark_ml_serving.regression

import io.hydrosphere.spark_ml_serving._
import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.ml.regression.{DecisionTreeRegressionModel, RandomForestRegressionModel}


class LocalRandomForestRegressionModel(override val sparkTransformer: RandomForestRegressionModel) extends LocalTransformer[RandomForestRegressionModel] {
  override def transform(localData: LocalData): LocalData = {
    val cls = classOf[RandomForestRegressionModel]
    val predict = cls.getMethod("predict", classOf[Vector])
    localData.column(sparkTransformer.getFeaturesCol) match {
      case Some(column) =>
        val predictionCol = LocalDataColumn(sparkTransformer.getPredictionCol, column.data.map(f => Vectors.dense(f.asInstanceOf[Array[Double]])).map{ vector =>
          predict.invoke(sparkTransformer, vector).asInstanceOf[Double]
        })
        localData.withColumn(predictionCol)
      case None => localData
    }
  }
}

object LocalRandomForestRegressionModel extends LocalModel[RandomForestRegressionModel] {
  override def load(metadata: Metadata, data: Map[String, Any]): RandomForestRegressionModel = {
    val treesMetadata = metadata.paramMap("treesMetadata").asInstanceOf[Map[String, Any]]
    val trees = treesMetadata map { treeKv =>
      val treeMeta = treeKv._2.asInstanceOf[Map[String, Any]]
      val meta = treeMeta("metadata").asInstanceOf[Metadata]
      LocalDecisionTreeRegressionModel.createTree(
        meta,
        data(treeKv._1).asInstanceOf[Map[String, Any]]
      )
    }
    val ctor = classOf[RandomForestRegressionModel].getDeclaredConstructor(classOf[String], classOf[Array[DecisionTreeRegressionModel]], classOf[Int])
    ctor.setAccessible(true)
    val inst = ctor
      .newInstance(
        metadata.uid,
        trees.to[Array],
        metadata.numFeatures.get.asInstanceOf[java.lang.Integer]
      )
      .setFeaturesCol(metadata.paramMap("featuresCol").asInstanceOf[String])
      .setPredictionCol(metadata.paramMap("predictionCol").asInstanceOf[String])

    inst
      .set(inst.seed, metadata.paramMap("seed").toString.toLong)
      .set(inst.subsamplingRate, metadata.paramMap("subsamplingRate").toString.toDouble)
      .set(inst.impurity, metadata.paramMap("impurity").toString)
  }

  override implicit def getTransformer(transformer: RandomForestRegressionModel): LocalTransformer[RandomForestRegressionModel] = new LocalRandomForestRegressionModel(transformer)
} 
开发者ID:Hydrospheredata,项目名称:spark-ml-serving,代码行数:53,代码来源:LocalRandomForestRegressionModel.scala


示例15: SparkVector

//设置package包名称以及导入依赖的类
package linalg.vector
import org.apache.spark.ml.linalg.{Vector, Vectors}

object SparkVector {

  def main(args: Array[String]): Unit = {
    // Create a dense vector (1.0, 0.0, 3.0).

    val dVectorOne: Vector = Vectors.dense(1.0, 0.0, 2.0)
    println("dVectorOne:" + dVectorOne)

    //  Sparse vector (1.0, 0.0, 2.0, 3.0)
    // corresponding to nonzero entries.
    val sVectorOne: Vector = Vectors.sparse(4,  Array(0, 2,3),  Array(1.0, 2.0, 3.0))

    // Create a sparse vector (1.0, 0.0, 2.0, 2.0) by specifying its
    // nonzero entries.
    val sVectorTwo: Vector = Vectors.sparse(4,  Seq((0, 1.0), (2, 2.0), (3, 3.0)))

    println("sVectorOne:" + sVectorOne)
    println("sVectorTwo:" + sVectorTwo)

    val sVectorOneMax = sVectorOne.argmax
    val sVectorOneNumNonZeros = sVectorOne.numNonzeros
    val sVectorOneSize = sVectorOne.size
    val sVectorOneArray = sVectorOne.toArray

    println("sVectorOneMax:" + sVectorOneMax)
    println("sVectorOneNumNonZeros:" + sVectorOneNumNonZeros)
    println("sVectorOneSize:" + sVectorOneSize)
    println("sVectorOneArray:" + sVectorOneArray)
    val dVectorOneToSparse = dVectorOne.toSparse

    println("dVectorOneToSparse:" + dVectorOneToSparse)


  }
} 
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:39,代码来源:SparkVector.scala


示例16: LocalRandomForestClassificationModel

//设置package包名称以及导入依赖的类
package io.hydrosphere.mist.api.ml.classification

import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.classification.{DecisionTreeClassificationModel, RandomForestClassificationModel}
import org.apache.spark.ml.linalg.{DenseVector, Vector, Vectors}

class LocalRandomForestClassificationModel(override val sparkTransformer: RandomForestClassificationModel) extends LocalTransformer[RandomForestClassificationModel] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getFeaturesCol) match {
      case Some(column) =>
        val cls = classOf[RandomForestClassificationModel]
        val rawPredictionCol = LocalDataColumn(sparkTransformer.getRawPredictionCol, column.data.map(f => Vectors.dense(f.asInstanceOf[Array[Double]])).map { vector =>
          val predictRaw = cls.getDeclaredMethod("predictRaw", classOf[Vector])
          predictRaw.invoke(sparkTransformer, vector)
        })
        val probabilityCol = LocalDataColumn(sparkTransformer.getProbabilityCol, rawPredictionCol.data.map(_.asInstanceOf[DenseVector]).map { vector =>
          val raw2probabilityInPlace = cls.getDeclaredMethod("raw2probabilityInPlace", classOf[Vector])
          raw2probabilityInPlace.invoke(sparkTransformer, vector.copy)
        })
        val predictionCol = LocalDataColumn(sparkTransformer.getPredictionCol, rawPredictionCol.data.map(_.asInstanceOf[DenseVector]).map { vector =>
          val raw2prediction = cls.getMethod("raw2prediction", classOf[Vector])
          raw2prediction.invoke(sparkTransformer, vector.copy)
        })
        localData.withColumn(rawPredictionCol)
          .withColumn(probabilityCol)
          .withColumn(predictionCol)
      case None => localData
    }
  }
}

object LocalRandomForestClassificationModel extends LocalModel[RandomForestClassificationModel] {
  override def load(metadata: Metadata, data: Map[String, Any]): RandomForestClassificationModel = {
    val treesMetadata = metadata.paramMap("treesMetadata").asInstanceOf[Map[String, Any]]
    val trees = treesMetadata map { treeKv =>
      val treeMeta = treeKv._2.asInstanceOf[Map[String, Any]]
      val meta = treeMeta("metadata").asInstanceOf[Metadata]
      LocalDecisionTreeClassificationModel.createTree(
        meta,
        data(treeKv._1).asInstanceOf[Map[String, Any]]
      )
    }
    val ctor = classOf[RandomForestClassificationModel].getDeclaredConstructor(classOf[String], classOf[Array[DecisionTreeClassificationModel]], classOf[Int], classOf[Int])
    ctor.setAccessible(true)
    ctor
      .newInstance(
        metadata.uid,
        trees.to[Array],
        metadata.numFeatures.get.asInstanceOf[java.lang.Integer],
        metadata.numClasses.get.asInstanceOf[java.lang.Integer]
      )
      .setFeaturesCol(metadata.paramMap("featuresCol").asInstanceOf[String])
      .setPredictionCol(metadata.paramMap("predictionCol").asInstanceOf[String])
      .setProbabilityCol(metadata.paramMap("probabilityCol").asInstanceOf[String])
  }

  override implicit def getTransformer(transformer: RandomForestClassificationModel): LocalTransformer[RandomForestClassificationModel] = new LocalRandomForestClassificationModel(transformer)
} 
开发者ID:Hydrospheredata,项目名称:mist,代码行数:59,代码来源:LocalRandomForestClassificationModel.scala


示例17: LocalDecisionTreeClassificationModel

//设置package包名称以及导入依赖的类
package io.hydrosphere.mist.api.ml.classification

import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.classification.DecisionTreeClassificationModel
import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.ml.tree.Node

class LocalDecisionTreeClassificationModel(override val sparkTransformer: DecisionTreeClassificationModel) extends LocalTransformer[DecisionTreeClassificationModel] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getFeaturesCol) match {
      case Some(column) =>
        val method = classOf[DecisionTreeClassificationModel].getMethod("predict", classOf[Vector])
        method.setAccessible(true)
        val newColumn = LocalDataColumn(sparkTransformer.getPredictionCol, column.data.map(f => Vectors.dense(f.asInstanceOf[Array[Double]])).map { vector =>
          method.invoke(sparkTransformer, vector).asInstanceOf[Double]
        })
        localData.withColumn(newColumn)
      case None => localData
    }
  }
}

object LocalDecisionTreeClassificationModel extends LocalModel[DecisionTreeClassificationModel] {
  override def load(metadata: Metadata, data: Map[String, Any]): DecisionTreeClassificationModel = {
    createTree(metadata, data)
  }

  def createTree(metadata: Metadata, data: Map[String, Any]): DecisionTreeClassificationModel = {
    val ctor = classOf[DecisionTreeClassificationModel].getDeclaredConstructor(classOf[String], classOf[Node], classOf[Int], classOf[Int])
    ctor.setAccessible(true)
    val inst = ctor.newInstance(
      metadata.uid,
      DataUtils.createNode(0, metadata, data),
      metadata.numFeatures.get.asInstanceOf[java.lang.Integer],
      metadata.numClasses.get.asInstanceOf[java.lang.Integer]
    )
    inst
      .setFeaturesCol(metadata.paramMap("featuresCol").asInstanceOf[String])
      .setPredictionCol(metadata.paramMap("predictionCol").asInstanceOf[String])
      .setProbabilityCol(metadata.paramMap("probabilityCol").asInstanceOf[String])
      .setRawPredictionCol(metadata.paramMap("rawPredictionCol").asInstanceOf[String])
    inst
      .set(inst.seed, metadata.paramMap("seed").toString.toLong)
      .set(inst.cacheNodeIds, metadata.paramMap("cacheNodeIds").toString.toBoolean)
      .set(inst.maxDepth, metadata.paramMap("maxDepth").toString.toInt)
      .set(inst.labelCol, metadata.paramMap("labelCol").toString)
      .set(inst.minInfoGain, metadata.paramMap("minInfoGain").toString.toDouble)
      .set(inst.checkpointInterval, metadata.paramMap("checkpointInterval").toString.toInt)
      .set(inst.minInstancesPerNode, metadata.paramMap("minInstancesPerNode").toString.toInt)
      .set(inst.maxMemoryInMB, metadata.paramMap("maxMemoryInMB").toString.toInt)
      .set(inst.maxBins, metadata.paramMap("maxBins").toString.toInt)
      .set(inst.impurity, metadata.paramMap("impurity").toString)
  }

  override implicit def getTransformer(transformer: DecisionTreeClassificationModel): LocalTransformer[DecisionTreeClassificationModel] = new LocalDecisionTreeClassificationModel(transformer)
} 
开发者ID:Hydrospheredata,项目名称:mist,代码行数:57,代码来源:LocalDecisionTreeClassificationModel.scala


示例18: LocalMultilayerPerceptronClassificationModel

//设置package包名称以及导入依赖的类
package io.hydrosphere.mist.api.ml.classification

import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.classification.MultilayerPerceptronClassificationModel
import org.apache.spark.ml.linalg.{Vector, Vectors}

class LocalMultilayerPerceptronClassificationModel(override val sparkTransformer: MultilayerPerceptronClassificationModel) extends LocalTransformer[MultilayerPerceptronClassificationModel] {

  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getFeaturesCol) match {
      case Some(column) =>
        val method = classOf[MultilayerPerceptronClassificationModel].getMethod("predict", classOf[Vector])
        method.setAccessible(true)
        val newColumn = LocalDataColumn(sparkTransformer.getPredictionCol, column.data map { feature =>
          method.invoke(sparkTransformer, feature.asInstanceOf[Vector]).asInstanceOf[Double]
        })
        localData.withColumn(newColumn)
      case None => localData
    }
  }
}

object LocalMultilayerPerceptronClassificationModel extends LocalModel[MultilayerPerceptronClassificationModel] {
  override def load(metadata: Metadata, data: Map[String, Any]): MultilayerPerceptronClassificationModel = {
    val constructor = classOf[MultilayerPerceptronClassificationModel].getDeclaredConstructor(classOf[String], classOf[Array[Int]], classOf[Vector])
    constructor.setAccessible(true)
    constructor
      .newInstance(metadata.uid, data("layers").asInstanceOf[List[Int]].to[Array], Vectors.dense(data("weights").asInstanceOf[Map[String, Any]]("values").asInstanceOf[List[Double]].toArray))
      .setFeaturesCol(metadata.paramMap("featuresCol").asInstanceOf[String])
      .setPredictionCol(metadata.paramMap("predictionCol").asInstanceOf[String])
  }

  override implicit def getTransformer(transformer: MultilayerPerceptronClassificationModel): LocalTransformer[MultilayerPerceptronClassificationModel] = new LocalMultilayerPerceptronClassificationModel(transformer)
} 
开发者ID:Hydrospheredata,项目名称:mist,代码行数:35,代码来源:LocalMultilayerPerceptronClassificationModel.scala


示例19: LocalPolynomialExpansion

//设置package包名称以及导入依赖的类
package io.hydrosphere.mist.api.ml.preprocessors

import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.feature.PolynomialExpansion
import org.apache.spark.ml.linalg.{Vector, Vectors}

class LocalPolynomialExpansion(override val sparkTransformer: PolynomialExpansion) extends LocalTransformer[PolynomialExpansion] {
  override def t 

鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Scala ChronoUnit类代码示例发布时间:2022-05-23
下一篇:
Scala CyclicBarrier类代码示例发布时间:2022-05-23
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap