本文整理汇总了Golang中github.com/gonum/floats.EqualApprox函数的典型用法代码示例。如果您正苦于以下问题:Golang EqualApprox函数的具体用法?Golang EqualApprox怎么用?Golang EqualApprox使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了EqualApprox函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Golang代码示例。
示例1: RegularizerTest
func RegularizerTest(t *testing.T, r Regularizer, name string, parameters []float64, trueLoss float64, trueDeriv []float64) {
// Test that Loss works
loss := r.Loss(parameters)
if math.Abs(loss-trueLoss) > 1e-14 {
t.Errorf("Loss doesn't match for case %v. Expected: %v, Found: %v", name, trueLoss, loss)
}
// Test that LossDeriv works
derivative := make([]float64, len(trueDeriv))
lossDeriv := r.LossDeriv(parameters, derivative)
if math.Abs(lossDeriv-trueLoss) > 1e-14 {
t.Errorf("Loss doesn't match from LossDeriv for case %v. Expected: %v, Found: %v", name, trueLoss, lossDeriv)
}
if !floats.EqualApprox(trueDeriv, derivative, 1e-14) {
t.Errorf("Derivative doesn't match from LossDeriv for case %v", name)
}
for i := range derivative {
derivative[i] = float64(i)
}
lossAddDeriv := r.LossAddDeriv(parameters, derivative)
if math.Abs(lossAddDeriv-trueLoss) > 1e-14 {
t.Errorf("Loss doesn't match from LossAddDeriv for case %v. Expected: %v, Found: %v", name, trueLoss, lossAddDeriv)
}
for i := range derivative {
derivative[i] -= float64(i)
}
if !floats.EqualApprox(trueDeriv, derivative, 1e-14) {
t.Errorf("Derivative doesn't match from LossAddDeriv for case %v", name)
}
}
开发者ID:reggo,项目名称:reggo,代码行数:32,代码来源:regularize_test.go
示例2: TestVectorMul
func (s *S) TestVectorMul(c *check.C) {
for i, test := range []struct {
m int
n int
}{
{
m: 10,
n: 5,
},
{
m: 5,
n: 5,
},
{
m: 5,
n: 10,
},
} {
vData := make([]float64, test.n)
for i := range vData {
vData[i] = rand.Float64()
}
vDataCopy := make([]float64, test.n)
copy(vDataCopy, vData)
v := NewVector(test.n, vData)
aData := make([]float64, test.n*test.m)
for i := range aData {
aData[i] = rand.Float64()
}
a := NewDense(test.m, test.n, aData)
var v2 Vector
v2.MulVec(a, false, v)
var v2M Dense
v2M.Mul(a, v)
same := floats.EqualApprox(v2.mat.Data, v2M.mat.Data, 1e-14)
c.Check(same, check.Equals, true, check.Commentf("Test %d", i))
var aT Dense
aT.TCopy(a)
v2.MulVec(&aT, true, v)
same = floats.EqualApprox(v2.mat.Data, v2M.mat.Data, 1e-14)
c.Check(same, check.Equals, true, check.Commentf("Test %d", i))
/*
v.MulVec(&aT, true, v)
same = floats.EqualApprox(v.mat.Data, v2M.mat.Data, 1e-14)
c.Check(same, check.Equals, true, check.Commentf("Test %d", i))
*/
}
}
开发者ID:lazywei,项目名称:matrix,代码行数:51,代码来源:vector_test.go
示例3: TestLogSquared
func TestLogSquared(t *testing.T) {
prediction := []float64{1, -2, 3}
truth := []float64{1.1, -2.2, 2.7}
trueloss := (math.Log(.1*.1+1) + math.Log(.2*.2+1) + math.Log(.3*.3+1)) / 3
derivative := []float64{0, 0, 0}
sq := LogSquared{}
loss := sq.Loss(prediction, truth)
if math.Abs(loss-trueloss) > TOL {
t.Errorf("loss doesn't match from Loss(). Expected %v, Found: %v", trueloss, loss)
}
loss = sq.LossDeriv(prediction, truth, derivative)
if math.Abs(loss-trueloss) > TOL {
t.Errorf("loss doesn't match from LossDeriv()")
}
derivative, fdDerivative := finiteDifferenceLosser(sq, prediction, truth)
if !floats.EqualApprox(derivative, fdDerivative, FDTol) {
t.Errorf("Derivative doesn't match. \n deriv: %v \n fdDeriv: %v ", derivative, fdDerivative)
}
err := common.InterfaceTestMarshalAndUnmarshal(sq)
if err != nil {
t.Errorf("Error marshaling and unmarshaling")
}
}
开发者ID:reggo,项目名称:reggo,代码行数:25,代码来源:loss_test.go
示例4: TestRelativeLog
func TestRelativeLog(t *testing.T) {
tol := 1e-2
prediction := []float64{1, -2, 3}
truth := []float64{1.1, -2.2, 2.7}
trueloss := ((.1/(1.1+tol))*(.1/(1.1+tol)) + (.2/(2.2+tol))*(.2/(2.2+tol)) + (.3/(2.7+tol))*(.3/(2.7+tol))) / 3
trueloss = math.Log(trueloss + 1)
derivative := []float64{0, 0, 0}
sq := RelativeLog(tol)
loss := sq.Loss(prediction, truth)
if math.Abs(loss-trueloss) > TOL {
t.Errorf("loss doesn't match from Loss(). Expected %v, Found: %v", trueloss, loss)
}
loss = sq.LossDeriv(prediction, truth, derivative)
if math.Abs(loss-trueloss) > TOL {
t.Errorf("loss doesn't match from LossDeriv()")
}
derivative, fdDerivative := finiteDifferenceLosser(sq, prediction, truth)
if !floats.EqualApprox(derivative, fdDerivative, FDTol) {
t.Errorf("Derivative doesn't match. \n deriv: %v \n fdDeriv: %v ", derivative, fdDerivative)
}
err := common.InterfaceTestMarshalAndUnmarshal(sq)
if err != nil {
t.Errorf("Error marshaling and unmarshaling: " + err.Error())
}
}
开发者ID:reggo,项目名称:reggo,代码行数:28,代码来源:loss_test.go
示例5: DrsclTest
func DrsclTest(t *testing.T, impl Drscler) {
for _, test := range []struct {
x []float64
a float64
}{
{
x: []float64{1, 2, 3, 4, 5},
a: 4,
},
{
x: []float64{1, 2, 3, 4, 5},
a: math.MaxFloat64,
},
{
x: []float64{1, 2, 3, 4, 5},
a: 1e-307,
},
} {
xcopy := make([]float64, len(test.x))
copy(xcopy, test.x)
// Cannot test the scaling directly because of floating point scaling issues
// (the purpose of Drscl). Instead, check that scaling and scaling back
// yeilds approximately x. If overflow or underflow occurs then the scaling
// won't match.
impl.Drscl(len(test.x), test.a, xcopy, 1)
if floats.Equal(xcopy, test.x) {
t.Errorf("x unchanged during call to drscl. a = %v, x = %v.", test.a, test.x)
}
impl.Drscl(len(test.x), 1/test.a, xcopy, 1)
if !floats.EqualApprox(xcopy, test.x, 1e-14) {
t.Errorf("x not equal after scaling and unscaling. a = %v, x = %v.", test.a, test.x)
}
}
}
开发者ID:rawlingsj,项目名称:gofabric8,代码行数:35,代码来源:drscl.go
示例6: testDerivParam
func testDerivParam(t *testing.T, d derivParamTester) {
// Tests that the derivative matches for a number of different quantiles
// along the distribution.
nTest := 10
quantiles := make([]float64, nTest)
floats.Span(quantiles, 0.1, 0.9)
deriv := make([]float64, d.NumParameters())
fdDeriv := make([]float64, d.NumParameters())
initParams := d.parameters(nil)
init := make([]float64, d.NumParameters())
for i, v := range initParams {
init[i] = v.Value
}
for _, v := range quantiles {
d.setParameters(initParams)
x := d.Quantile(v)
d.DLogProbDParam(x, deriv)
f := func(p []float64) float64 {
params := d.parameters(nil)
for i, v := range p {
params[i].Value = v
}
d.setParameters(params)
return d.LogProb(x)
}
fd.Gradient(fdDeriv, f, init, nil)
if !floats.EqualApprox(deriv, fdDeriv, 1e-6) {
t.Fatal("Derivative mismatch. Want", fdDeriv, ", got", deriv, ".")
}
}
}
开发者ID:darrenmcc,项目名称:stat,代码行数:33,代码来源:general_test.go
示例7: TestPrivatePredictsMatch
func TestPrivatePredictsMatch(t *testing.T) {
for i, test := range netIniters {
for j := 0; j < nRandSamp; j++ {
n := testNets[i]
input := make([]float64, test.inputDim)
floats.Fill(rand.NormFloat64, input)
outputSimple := make([]float64, test.outputDim)
floats.Fill(rand.NormFloat64, outputSimple)
outputCache := make([]float64, test.outputDim)
floats.Fill(rand.NormFloat64, outputCache)
// predict using uncached method
tmp1, tmp2 := newPredictMemory(n.neurons)
predict(input, n.neurons, n.parameters, tmp1, tmp2, outputSimple)
// predict using cached method
combinations := newPerNeuronMemory(n.neurons)
outputs := newPerNeuronMemory(n.neurons)
cachePredict(input, n.neurons, n.parameters, combinations, outputs, outputCache)
if !floats.EqualApprox(outputSimple, outputCache, 1e-14) {
t.Errorf("test %v: output mismatch between simple and cached predict. Simple: %v, Cached: %v", test.name, outputSimple, outputCache)
break
}
}
}
}
开发者ID:reggo,项目名称:reggo,代码行数:27,代码来源:nnet_test.go
示例8: DspmvTest
func DspmvTest(t *testing.T, blasser Dspmver) {
for i, test := range []struct {
ul blas.Uplo
n int
a [][]float64
x []float64
y []float64
alpha float64
beta float64
ans []float64
}{
{
ul: blas.Upper,
n: 3,
a: [][]float64{
{5, 6, 7},
{0, 8, 10},
{0, 0, 13},
},
x: []float64{3, 4, 5},
y: []float64{6, 7, 8},
alpha: 2.1,
beta: -3,
ans: []float64{137.4, 189, 240.6},
},
{
ul: blas.Lower,
n: 3,
a: [][]float64{
{5, 0, 0},
{6, 8, 0},
{7, 10, 13},
},
x: []float64{3, 4, 5},
y: []float64{6, 7, 8},
alpha: 2.1,
beta: -3,
ans: []float64{137.4, 189, 240.6},
},
} {
incTest := func(incX, incY, extra int) {
x := makeIncremented(test.x, incX, extra)
y := makeIncremented(test.y, incY, extra)
aFlat := flattenTriangular(test.a, test.ul)
ans := makeIncremented(test.ans, incY, extra)
blasser.Dspmv(test.ul, test.n, test.alpha, aFlat, x, incX, test.beta, y, incY)
if !floats.EqualApprox(ans, y, 1e-14) {
t.Errorf("Case %v, incX=%v, incY=%v: Want %v, got %v.", i, incX, incY, ans, y)
}
}
incTest(1, 1, 0)
incTest(2, 3, 0)
incTest(3, 2, 0)
incTest(-3, 2, 0)
incTest(-2, 4, 0)
incTest(2, -1, 0)
incTest(-3, -4, 3)
}
}
开发者ID:gidden,项目名称:cloudlus,代码行数:60,代码来源:dspmv.go
示例9: Dlasv2Test
func Dlasv2Test(t *testing.T, impl Dlasv2er) {
rnd := rand.New(rand.NewSource(1))
for i := 0; i < 100; i++ {
f := rnd.NormFloat64()
g := rnd.NormFloat64()
h := rnd.NormFloat64()
ssmin, ssmax, snr, csr, snl, csl := impl.Dlasv2(f, g, h)
// tmp =
// [ csl snl] [f g]
// [-snl csl] [0 h]
tmp11 := csl * f
tmp12 := csl*g + snl*h
tmp21 := -snl * f
tmp22 := -snl*g + csl*h
// lhs =
// [tmp11 tmp12] [csr -snr]
// [tmp21 tmp22] [snr csr]
ans11 := tmp11*csr + tmp12*snr
ans12 := tmp11*-snr + tmp12*csr
ans21 := tmp21*csr + tmp22*snr
ans22 := tmp21*-snr + tmp22*csr
lhs := []float64{ans11, ans12, ans21, ans22}
rhs := []float64{ssmax, 0, 0, ssmin}
if !floats.EqualApprox(rhs, lhs, 1e-12) {
t.Errorf("SVD mismatch. f = %v, g = %v, h = %v.\nLHS: %v\nRHS: %v", f, g, h, lhs, rhs)
}
}
}
开发者ID:rawlingsj,项目名称:gofabric8,代码行数:31,代码来源:dlasv2.go
示例10: testDpotf2
func testDpotf2(t *testing.T, impl Dpotf2er, testPos bool, a, ans [][]float64, stride int, ul blas.Uplo) {
aFlat := flattenTri(a, stride, ul)
ansFlat := flattenTri(ans, stride, ul)
pos := impl.Dpotf2(ul, len(a[0]), aFlat, stride)
if pos != testPos {
t.Errorf("Positive definite mismatch: Want %v, Got %v", testPos, pos)
return
}
if testPos && !floats.EqualApprox(ansFlat, aFlat, 1e-14) {
t.Errorf("Result mismatch: Want %v, Got %v", ansFlat, aFlat)
}
}
开发者ID:gidden,项目名称:cloudlus,代码行数:12,代码来源:dpotf2.go
示例11: TestNormRand
func TestNormRand(t *testing.T) {
for _, test := range []struct {
mean []float64
cov []float64
}{
{
mean: []float64{0, 0},
cov: []float64{
1, 0,
0, 1,
},
},
{
mean: []float64{0, 0},
cov: []float64{
1, 0.9,
0.9, 1,
},
},
{
mean: []float64{6, 7},
cov: []float64{
5, 0.9,
0.9, 2,
},
},
} {
dim := len(test.mean)
cov := mat64.NewSymDense(dim, test.cov)
n, ok := NewNormal(test.mean, cov, nil)
if !ok {
t.Errorf("bad covariance matrix")
}
nSamples := 1000000
samps := mat64.NewDense(nSamples, dim, nil)
for i := 0; i < nSamples; i++ {
n.Rand(samps.RawRowView(i))
}
estMean := make([]float64, dim)
for i := range estMean {
estMean[i] = stat.Mean(mat64.Col(nil, i, samps), nil)
}
if !floats.EqualApprox(estMean, test.mean, 1e-2) {
t.Errorf("Mean mismatch: want: %v, got %v", test.mean, estMean)
}
estCov := stat.CovarianceMatrix(nil, samps, nil)
if !mat64.EqualApprox(estCov, cov, 1e-2) {
t.Errorf("Cov mismatch: want: %v, got %v", cov, estCov)
}
}
}
开发者ID:darrenmcc,项目名称:stat,代码行数:52,代码来源:normal_test.go
示例12: testLinear
func testLinear(t *testing.T, kind linearTest) {
u := &Linear{}
data := flatten(kind.data)
err := u.SetScale(data)
if err != nil {
if kind.eqDim != true {
t.Errorf("Error where there shouldn't be for case " + kind.name + ": " + err.Error())
}
}
if !floats.EqualApprox(u.Min, kind.min, 1e-14) {
t.Errorf("Min doesn't match for case " + kind.name)
}
if !floats.EqualApprox(u.Max, kind.max, 1e-14) {
t.Errorf("Max doesn't match for case " + kind.name)
}
scaledData := flatten(kind.scaledData)
testScaling(t, u, data, scaledData, kind.name)
u2 := &Linear{}
testGob(u, u2, t)
}
开发者ID:reggo,项目名称:scale,代码行数:22,代码来源:scale_test.go
示例13: denseEqualApprox
func denseEqualApprox(a *Dense, acomp matComp, tol float64) bool {
ar2, ac2 := a.Dims()
if ar2 != acomp.r {
return false
}
if ac2 != acomp.c {
return false
}
if !floats.EqualApprox(a.mat.Data, acomp.data, tol) {
return false
}
return true
}
开发者ID:RomainVabre,项目名称:origin,代码行数:13,代码来源:mul_test.go
示例14: testNormal
func testNormal(t *testing.T, kind normalTest) {
u := &Normal{}
data := flatten(kind.data)
err := u.SetScale(data)
if err != nil {
if kind.eqDim != true {
t.Errorf("Error where there shouldn't be for case " + kind.name + ": " + err.Error())
}
}
if !floats.EqualApprox(u.Mu, kind.mu, 1e-14) {
t.Errorf("Mu doesn't match for case "+kind.name+". Expected: %v, Found: %v", kind.mu, u.Mu)
}
if !floats.EqualApprox(u.Sigma, kind.sigma, 1e-14) {
t.Errorf("Sigma doesn't match for case "+kind.name+". Expected: %v, Found: %v", kind.sigma, u.Sigma)
}
scaledData := flatten(kind.scaledData)
testScaling(t, u, data, scaledData, kind.name)
u2 := &Normal{}
testGob(u, u2, t)
}
开发者ID:reggo,项目名称:scale,代码行数:22,代码来源:scale_test.go
示例15: DorgqlTest
func DorgqlTest(t *testing.T, impl Dorgqler) {
rnd := rand.New(rand.NewSource(1))
for _, test := range []struct {
m, n, k, lda int
}{
{5, 4, 3, 0},
{100, 100, 100, 0},
{200, 100, 50, 0},
{200, 200, 50, 0},
} {
m := test.m
n := test.n
k := test.k
lda := test.lda
if lda == 0 {
lda = n
}
a := make([]float64, m*lda)
for i := range a {
a[i] = rnd.NormFloat64()
}
tau := nanSlice(min(m, n))
work := nanSlice(max(m, n))
impl.Dgeql2(m, n, a, lda, tau, work)
aCopy := make([]float64, len(a))
copy(aCopy, a)
impl.Dorg2l(m, n, k, a, lda, tau, work)
ans := make([]float64, len(a))
copy(ans, a)
impl.Dorgql(m, n, k, a, lda, tau, work, -1)
work = make([]float64, int(work[0]))
copy(a, aCopy)
impl.Dorgql(m, n, k, a, lda, tau, work, len(work))
if !floats.EqualApprox(a, ans, 1e-8) {
t.Errorf("Answer mismatch. m = %v, n = %v, k = %v", m, n, k)
}
}
}
开发者ID:rawlingsj,项目名称:gofabric8,代码行数:43,代码来源:dorgql.go
示例16: TestDeriv
// TestDeriv uses finite difference to test that the prediction from Deriv
// is correct, and tests that computing the loss in parallel works properly
// Only does finite difference for the first nTest to save time
func TestDeriv(t *testing.T, trainable DerivTester, inputs, trueOutputs common.RowMatrix, name string) {
// Set the parameters to something random
trainable.RandomizeParameters()
// Compute the loss and derivative
losser := loss.SquaredDistance{}
regularizer := regularize.TwoNorm{}
batchGrad := train.NewBatchGradBased(trainable, true, inputs, trueOutputs, losser, regularizer)
derivative := make([]float64, trainable.NumParameters())
parameters := trainable.Parameters(nil)
// Don't need to check loss, because if predict is right and losser is right then loss must be correct
_ = batchGrad.ObjGrad(parameters, derivative)
fdDerivative := make([]float64, trainable.NumParameters())
wg := &sync.WaitGroup{}
wg.Add(trainable.NumParameters())
for i := 0; i < trainable.NumParameters(); i++ {
go func(i int) {
newParameters := make([]float64, trainable.NumParameters())
tmpDerivative := make([]float64, trainable.NumParameters())
copy(newParameters, parameters)
newParameters[i] += fdStep
loss1 := batchGrad.ObjGrad(newParameters, tmpDerivative)
newParameters[i] -= 2 * fdStep
loss2 := batchGrad.ObjGrad(newParameters, tmpDerivative)
newParameters[i] += fdStep
fdDerivative[i] = (loss1 - loss2) / (2 * fdStep)
wg.Done()
}(i)
}
wg.Wait()
if !floats.EqualApprox(derivative, fdDerivative, 1e-6) {
t.Errorf("%v: deriv doesn't match: Finite Difference: %v, Analytic: %v", name, fdDerivative, derivative)
}
}
开发者ID:reggo,项目名称:regtest,代码行数:43,代码来源:regtest.go
示例17: TestPredictFeaturized
func TestPredictFeaturized(t *testing.T) {
for _, test := range []struct {
z []float64
featureWeights [][]float64
output []float64
Name string
}{
{
Name: "General",
z: []float64{1, 2, 3},
featureWeights: [][]float64{
{3, 4},
{1, 2},
{0.5, 0.4},
},
output: []float64{6.5, 9.2},
},
} {
zCopy := make([]float64, len(test.z))
copy(zCopy, test.z)
fwMat := flatten(test.featureWeights)
fwMatCopy := &mat64.Dense{}
fwMatCopy.Clone(fwMat)
output := make([]float64, len(test.output))
predictFeaturized(zCopy, fwMat, output)
// Test that z wasn't changed
if !floats.Equal(test.z, zCopy) {
t.Errorf("z changed during call")
}
if !floats.EqualApprox(output, test.output, 1e-14) {
t.Errorf("output doesn't match for test %v. Expected %v, found %v", test.Name, test.output, output)
}
}
}
开发者ID:reggo,项目名称:reggo,代码行数:38,代码来源:kitchensink_test.go
示例18: TestManhattanDistance
func TestManhattanDistance(t *testing.T) {
prediction := []float64{1, 2, 3}
truth := []float64{1.1, 2.2, 2.7}
trueloss := (.1 + .2 + .3) / 3
derivative := []float64{0, 0, 0}
sq := ManhattanDistance{}
loss := sq.Loss(prediction, truth)
if math.Abs(loss-trueloss) > TOL {
t.Errorf("loss doesn't match from Loss()")
}
loss = sq.LossDeriv(prediction, truth, derivative)
if math.Abs(loss-trueloss) > TOL {
t.Errorf("loss doesn't match from LossDeriv()")
}
derivative, fdDerivative := finiteDifferenceLosser(sq, prediction, truth)
if !floats.EqualApprox(derivative, fdDerivative, FDTol) {
t.Errorf("Derivative doesn't match. \n deriv: %v \n fdDeriv: %v ", derivative, fdDerivative)
}
err := common.InterfaceTestMarshalAndUnmarshal(sq)
if err != nil {
t.Errorf("Error marshaling and unmarshaling")
}
truth = []float64{1, 2, 3}
loss = sq.LossDeriv(prediction, truth, derivative)
if loss != 0 {
t.Errorf("Non-zero loss for equal pred and truth")
}
for _, val := range derivative {
if val != 0 {
t.Errorf("Non-zero derivative for equal pred and truth")
}
}
}
开发者ID:reggo,项目名称:reggo,代码行数:37,代码来源:loss_test.go
示例19: DormbrTest
//.........这里部分代码省略.........
k := test.k
ldc := test.ldc
if ldc == 0 {
ldc = n
}
nq := n
if side == blas.Left {
nq = m
}
// Compute a decomposition.
var ma, na int
var a []float64
if vect == lapack.ApplyQ {
ma = nq
na = k
} else {
ma = k
na = nq
}
lda := test.lda
if lda == 0 {
lda = na
}
a = make([]float64, ma*lda)
for i := range a {
a[i] = rnd.NormFloat64()
}
nTau := min(nq, k)
tauP := make([]float64, nTau)
tauQ := make([]float64, nTau)
d := make([]float64, nTau)
e := make([]float64, nTau)
lwork := -1
work := make([]float64, 1)
impl.Dgebrd(ma, na, a, lda, d, e, tauQ, tauP, work, lwork)
work = make([]float64, int(work[0]))
lwork = len(work)
impl.Dgebrd(ma, na, a, lda, d, e, tauQ, tauP, work, lwork)
// Apply and compare update.
c := make([]float64, m*ldc)
for i := range c {
c[i] = rnd.NormFloat64()
}
cCopy := make([]float64, len(c))
copy(cCopy, c)
if vect == lapack.ApplyQ {
impl.Dormbr(vect, side, trans, m, n, k, a, lda, tauQ, c, ldc, work, lwork)
} else {
impl.Dormbr(vect, side, trans, m, n, k, a, lda, tauP, c, ldc, work, lwork)
}
// Check that the multiplication was correct.
cOrig := blas64.General{
Rows: m,
Cols: n,
Stride: ldc,
Data: make([]float64, len(cCopy)),
}
copy(cOrig.Data, cCopy)
cAns := blas64.General{
Rows: m,
Cols: n,
Stride: ldc,
Data: make([]float64, len(cCopy)),
}
copy(cAns.Data, cCopy)
nb := min(ma, na)
var mulMat blas64.General
if vect == lapack.ApplyQ {
mulMat = constructQPBidiagonal(lapack.ApplyQ, ma, na, nb, a, lda, tauQ)
} else {
mulMat = constructQPBidiagonal(lapack.ApplyP, ma, na, nb, a, lda, tauP)
}
mulTrans := trans
if side == blas.Left {
bi.Dgemm(mulTrans, blas.NoTrans, m, n, m, 1, mulMat.Data, mulMat.Stride, cOrig.Data, cOrig.Stride, 0, cAns.Data, cAns.Stride)
} else {
bi.Dgemm(blas.NoTrans, mulTrans, m, n, n, 1, cOrig.Data, cOrig.Stride, mulMat.Data, mulMat.Stride, 0, cAns.Data, cAns.Stride)
}
if !floats.EqualApprox(cAns.Data, c, 1e-8) {
isApplyQ := vect == lapack.ApplyQ
isLeft := side == blas.Left
isTrans := trans == blas.Trans
t.Errorf("C mismatch. isApplyQ: %v, isLeft: %v, isTrans: %v, m = %v, n = %v, k = %v, lda = %v, ldc = %v",
isApplyQ, isLeft, isTrans, m, n, k, lda, ldc)
}
}
}
}
}
}
开发者ID:rawlingsj,项目名称:gofabric8,代码行数:101,代码来源:dormbr.go
示例20: testFunction
// testFunction checks that the function can evaluate itself (and its gradient)
// correctly.
func testFunction(f function, ftests []funcTest, t *testing.T) {
// Make a copy of tests because we may append to the slice.
tests := make([]funcTest, len(ftests))
copy(tests, ftests)
// Get information about the function.
fMinima, isMinimumer := f.(minimumer)
fGradient, isGradient := f.(gradient)
// If the function is a Minimumer, append its minima to the tests.
if isMinimumer {
for _, minimum := range fMinima.Minima() {
// Allocate gradient only if the function can evaluate it.
var grad []float64
if isGradient {
grad = make([]float64, len(minimum.X))
}
tests = append(tests, funcTest{
X: minimum.X,
F: minimum.F,
Gradient: grad,
})
}
}
for i, test := range tests {
F := f.Func(test.X)
// Check that the function value is as expected.
if math.Abs(F-test.F) > defaultTol {
t.Errorf("Test #%d: function value given by Func is incorrect. Want: %v, Got: %v",
i, test.F, F)
}
if test.Gradient == nil {
continue
}
// Evaluate the finite difference gradient.
fdGrad := fd.Gradient(nil, f.Func, test.X, nil)
// Check that the finite difference and expected gradients match.
if !floats.EqualApprox(fdGrad, test.Gradient, defaultFDGradTol) {
dist := floats.Distance(fdGrad, test.Gradient, math.Inf(1))
t.Errorf("Test #%d: numerical and expected gradients do not match. |fdGrad - WantGrad|_∞ = %v",
i, dist)
}
// If the function is a Gradient, check that it computes the gradient correctly.
if isGradient {
grad := make([]float64, len(test.Gradient))
fGradient.Grad(grad, test.X)
if !floats.EqualApprox(grad, test.Gradient, defaultGradTol) {
dist := floats.Distance(grad, test.Gradient, math.Inf(1))
t.Errorf("Test #%d: gradient given by Grad is incorrect. |grad - WantGrad|_∞ = %v",
i, dist)
}
}
}
}
开发者ID:jgcarvalho,项目名称:zdd,代码行数:63,代码来源:validate.go
注:本文中的github.com/gonum/floats.EqualApprox函数示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论