• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Scala Normalizer类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Scala中org.apache.spark.ml.feature.Normalizer的典型用法代码示例。如果您正苦于以下问题:Scala Normalizer类的具体用法?Scala Normalizer怎么用?Scala Normalizer使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了Normalizer类的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Scala代码示例。

示例1: LocalNormalizer

//设置package包名称以及导入依赖的类
package io.hydrosphere.spark_ml_serving.preprocessors

import io.hydrosphere.spark_ml_serving._
import org.apache.spark.ml.feature.Normalizer
import org.apache.spark.ml.linalg.{DenseVector, SparseVector, Vector, Vectors}

class LocalNormalizer(override val sparkTransformer: Normalizer) extends LocalTransformer[Normalizer] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val method = classOf[Normalizer].getMethod("createTransformFunc")
        val newData = column.data.map(r => {
          val vector = r match {
            case x: List[Any] => Vectors.dense(x.map(_.toString.toDouble).toArray)
            case x: SparseVector => x
            case x: DenseVector => x
            case unknown =>
              throw new IllegalArgumentException(s"Unknown data type for LocalMaxAbsScaler: ${unknown.getClass}")
          }
          method.invoke(sparkTransformer).asInstanceOf[Vector => Vector](vector)
        })
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData))
      case None => localData
    }
  }
}

object LocalNormalizer extends LocalModel[Normalizer] {
  override def load(metadata: Metadata, data: Map[String, Any]): Normalizer = {
    new Normalizer(metadata.uid)
      .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String])
      .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String])
      .setP(metadata.paramMap("p").toString.toDouble)
  }

  override implicit def getTransformer(transformer: Normalizer): LocalTransformer[Normalizer] = new LocalNormalizer(transformer)
} 
开发者ID:Hydrospheredata,项目名称:spark-ml-serving,代码行数:38,代码来源:LocalNormalizer.scala


示例2: LocalNormalizer

//设置package包名称以及导入依赖的类
package io.hydrosphere.mist.api.ml.preprocessors

import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.feature.Normalizer
import org.apache.spark.ml.linalg.{DenseVector, SparseVector, Vector, Vectors}

class LocalNormalizer(override val sparkTransformer: Normalizer) extends LocalTransformer[Normalizer] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val method = classOf[Normalizer].getMethod("createTransformFunc")
        val newData = column.data.map(r => {
          val vector = r match {
            case x: List[Any] => Vectors.dense(x.map(_.toString.toDouble).toArray)
            case x: SparseVector => x
            case x: DenseVector => x
            case unknown =>
              throw new IllegalArgumentException(s"Unknown data type for LocalMaxAbsScaler: ${unknown.getClass}")
          }
          method.invoke(sparkTransformer).asInstanceOf[Vector => Vector](vector)
        })
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData))
      case None => localData
    }
  }
}

object LocalNormalizer extends LocalModel[Normalizer] {
  override def load(metadata: Metadata, data: Map[String, Any]): Normalizer = {
    new Normalizer(metadata.uid)
      .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String])
      .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String])
      .setP(metadata.paramMap("p").toString.toDouble)
  }

  override implicit def getTransformer(transformer: Normalizer): LocalTransformer[Normalizer] = new LocalNormalizer(transformer)
} 
开发者ID:Hydrospheredata,项目名称:mist,代码行数:38,代码来源:LocalNormalizer.scala


示例3: NormalizerJob

//设置package包名称以及导入依赖的类
import io.hydrosphere.mist.api._
import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.linalg.{Vector => LVector}
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.Normalizer
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.sql.SparkSession

object NormalizerJob extends MLMistJob{
  def session: SparkSession = SparkSession
    .builder()
    .appName(context.appName)
    .config(context.getConf)
    .getOrCreate()

  def train(savePath: String): Map[String, Any] = {
    val df = session.createDataFrame(Seq(
      (0, Vectors.dense(1.0, 0.5, -1.0)),
      (1, Vectors.dense(2.0, 1.0, 1.0)),
      (2, Vectors.dense(4.0, 10.0, 2.0))
    )).toDF("id", "features")

    val normalizer = new Normalizer()
      .setInputCol("features")
      .setOutputCol("normFeatures")
      .setP(1.0)

    val pipeline = new Pipeline().setStages(Array(normalizer))

    val model = pipeline.fit(df)

    model.write.overwrite().save(savePath)
    Map.empty[String, Any]
  }

  def serve(modelPath: String, features: List[List[Double]]): Map[String, Any] = {
    import LocalPipelineModel._

    val pipeline = PipelineLoader.load(modelPath)
    val data = LocalData(LocalDataColumn("features", features))

    val response = pipeline.transform(data).toMapList.map(rowMap => {
      val conv = rowMap("normFeatures").asInstanceOf[LVector].toArray
      rowMap + ("normFeatures" -> conv)
    })


    Map("result" -> response)
  }
} 
开发者ID:Hydrospheredata,项目名称:mist,代码行数:51,代码来源:NormalizerJob.scala



注:本文中的org.apache.spark.ml.feature.Normalizer类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Scala Binary类代码示例发布时间:2022-05-23
下一篇:
Scala JdbcUtils类代码示例发布时间:2022-05-23
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap