本文整理汇总了Scala中org.apache.spark.mllib.evaluation.RegressionMetrics类的典型用法代码示例。如果您正苦于以下问题:Scala RegressionMetrics类的具体用法?Scala RegressionMetrics怎么用?Scala RegressionMetrics使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了RegressionMetrics类的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Scala代码示例。
示例1: LinearRegressionPipeline
//设置package包名称以及导入依赖的类
package org.sparksamples.regression.bikesharing
import org.apache.log4j.Logger
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.{VectorAssembler, VectorIndexer}
import org.apache.spark.ml.regression.LinearRegression
import org.apache.spark.mllib.evaluation.RegressionMetrics
import org.apache.spark.sql.{DataFrame, SparkSession}
object LinearRegressionPipeline {
@transient lazy val logger = Logger.getLogger(getClass.getName)
def linearRegressionWithVectorFormat(vectorAssembler: VectorAssembler, vectorIndexer: VectorIndexer, dataFrame: DataFrame) = {
val lr = new LinearRegression()
.setFeaturesCol("features")
.setLabelCol("label")
.setRegParam(0.1)
.setElasticNetParam(1.0)
.setMaxIter(10)
val pipeline = new Pipeline().setStages(Array(vectorAssembler, vectorIndexer, lr))
val Array(training, test) = dataFrame.randomSplit(Array(0.8, 0.2), seed = 12345)
val model = pipeline.fit(training)
val fullPredictions = model.transform(test).cache()
val predictions = fullPredictions.select("prediction").rdd.map(_.getDouble(0))
val labels = fullPredictions.select("label").rdd.map(_.getDouble(0))
val RMSE = new RegressionMetrics(predictions.zip(labels)).rootMeanSquaredError
println(s" Root mean squared error (RMSE): $RMSE")
}
def linearRegressionWithSVMFormat(spark: SparkSession) = {
// Load training data
val training = spark.read.format("libsvm")
.load("./src/main/scala/org/sparksamples/regression/dataset/BikeSharing/lsvmHours.txt")
val lr = new LinearRegression()
.setMaxIter(10)
.setRegParam(0.3)
.setElasticNetParam(0.8)
// Fit the model
val lrModel = lr.fit(training)
// Print the coefficients and intercept for linear regression
println(s"Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}")
// Summarize the model over the training set and print out some metrics
val trainingSummary = lrModel.summary
println(s"numIterations: ${trainingSummary.totalIterations}")
println(s"objectiveHistory: ${trainingSummary.objectiveHistory.toList}")
trainingSummary.residuals.show()
println(s"RMSE: ${trainingSummary.rootMeanSquaredError}")
println(s"r2: ${trainingSummary.r2}")
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:61,代码来源:LinearRegressionPipeline.scala
示例2: TrainModel
//设置package包名称以及导入依赖的类
package songs
import org.apache.spark.ml.PipelineModel
import org.apache.spark.ml.regression.LinearRegressionModel
import org.apache.spark.mllib.evaluation.RegressionMetrics
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SQLContext
import org.slf4j.LoggerFactory
object TrainModel {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName(Config.appName)
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val logger = LoggerFactory.getLogger(getClass.getName)
logger.info("Loading datasets from parquet format")
val data = SongML.loadModelData(sqlContext = sqlContext)
logger.info("Showing summary stats for training data")
val summary = data.training.describe(SongML.allColumns:_*)
summary.show(1000)
logger.info("Training Linear Regression Model")
val startTime = System.nanoTime()
val pipeline = SongML.trainingPipeline.fit(data.training)
val elapsedTime = (System.nanoTime() - startTime) / 1e9
logger.info(s"Training time: $elapsedTime seconds")
logger.info("Calculating Regression Metrics")
val bestModel = pipeline.bestModel.asInstanceOf[PipelineModel]
val testPredictions: RDD[(Double,Double)] = bestModel.transform(data.training)
.select(SongML.predictionColumn, SongML.labelColumn)
.map(r => (r.getAs[Double](SongML.predictionColumn), r.getAs[Double](SongML.labelColumn)))
val rm = new RegressionMetrics(testPredictions)
val model = bestModel.stages(SongML.lrStages.indices.last).asInstanceOf[LinearRegressionModel]
logger.info(s"Saving model to ${Config.modelOut}")
model.write.overwrite().save(Config.modelOut)
logger.info(SongML.printStats(model,rm,"Training"))
logger.info("Exiting")
sc.stop()
}
}
开发者ID:jasonmar,项目名称:millionsongs,代码行数:54,代码来源:TrainModel.scala
示例3: EvaluateModel
//设置package包名称以及导入依赖的类
package songs
import org.apache.spark.ml.regression.{LinearRegression, LinearRegressionModel}
import org.apache.spark.mllib.evaluation.RegressionMetrics
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SQLContext
import org.slf4j.LoggerFactory
object EvaluateModel {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName(Config.appName)
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val logger = LoggerFactory.getLogger(getClass.getName)
logger.info(s"Loading Linear Regression Model from ${Config.modelOut}")
val model = LinearRegressionModel.load(Config.modelOut)
logger.info("Loading datasets")
val datasets = SongML.loadModelData(sqlContext = sqlContext)
val pipelineModel = SongML.transformPipeline.fit(datasets.training)
val testData = pipelineModel.transform(datasets.test).select(SongML.labelColumn,SongML.featuresColumn)
logger.info("Calculating Regression Metrics")
val testPredictions = model.transform(testData)
.select(SongML.labelColumn,SongML.predictionColumn)
.map(r => (r.getAs[Double](SongML.predictionColumn), r.getAs[Double](SongML.labelColumn)))
val rm = new RegressionMetrics(testPredictions)
logger.info(SongML.printStats(model,rm,"Testing"))
logger.info("Exiting")
sc.stop()
}
}
开发者ID:jasonmar,项目名称:millionsongs,代码行数:39,代码来源:EvaluateModel.scala
注:本文中的org.apache.spark.mllib.evaluation.RegressionMetrics类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论