• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Scala LinearRegressionWithSGD类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Scala中org.apache.spark.mllib.regression.LinearRegressionWithSGD的典型用法代码示例。如果您正苦于以下问题:Scala LinearRegressionWithSGD类的具体用法?Scala LinearRegressionWithSGD怎么用?Scala LinearRegressionWithSGD使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了LinearRegressionWithSGD类的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Scala代码示例。

示例1: MllibSGD

//设置package包名称以及导入依赖的类
package optimizers

import breeze.linalg.{DenseVector, Vector}
import org.apache.spark.mllib.classification.{LogisticRegressionWithSGD, SVMWithSGD}
import org.apache.spark.mllib.optimization.{L1Updater, SimpleUpdater, SquaredL2Updater, Updater}
import org.apache.spark.mllib.regression.{LabeledPoint, LinearRegressionWithSGD}
import org.apache.spark.rdd.RDD
import utils.Functions._

import scala.tools.cmd.gen.AnyVals.D




class MllibSGD(val data: RDD[LabeledPoint],
               loss: LossFunction,
               regularizer: Regularizer,
               params: SGDParameters,
               ctype: String
              ) extends Optimizer(loss, regularizer) {
  val opt = ctype match {
    case "SVM" => new SVMWithSGD()
    case "LR" => new LogisticRegressionWithSGD()
    case "Regression" => new LinearRegressionWithSGD()
  }

  val reg: Updater = (regularizer: Regularizer) match {
    case _: L1Regularizer => new L1Updater
    case _: L2Regularizer => new SquaredL2Updater
    case _: Unregularized => new SimpleUpdater
  }

  ctype match {
    case "SVM" => opt.asInstanceOf[SVMWithSGD].optimizer.
      setNumIterations(params.iterations).
      setMiniBatchFraction(params.miniBatchFraction).
      setStepSize(params.stepSize).
      setRegParam(regularizer.lambda).
      setUpdater(reg)
    case "LR" => opt.asInstanceOf[LogisticRegressionWithSGD].optimizer.
      setNumIterations(params.iterations).
      setMiniBatchFraction(params.miniBatchFraction).
      setStepSize(params.stepSize).
      setRegParam(regularizer.lambda).
      setUpdater(reg)
    case "Regression" => opt.asInstanceOf[LinearRegressionWithSGD].optimizer.
      setNumIterations(params.iterations).
      setMiniBatchFraction(params.miniBatchFraction).
      setStepSize(params.stepSize).
      setRegParam(regularizer.lambda).
      setUpdater(reg)
  }

  override def optimize(): Vector[Double] = {
    val model = opt.run(data)
    val w = model.weights.toArray
    DenseVector(w)
  }
} 
开发者ID:mlbench,项目名称:mlbench,代码行数:60,代码来源:MllibSGD.scala


示例2: PCAExample2

//设置package包名称以及导入依赖的类
package com.chapter11.SparkMachineLearning

import org.apache.spark.sql.SparkSession
import org.apache.spark.mllib.feature.PCA
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.mllib.regression.LinearRegressionWithSGD

object PCAExample2 {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder
      .master("local[*]")
      .config("spark.sql.warehouse.dir", "E:/Exp/")
      .appName(s"OneVsRestExample")
      .getOrCreate()

    val data = MLUtils.loadLibSVMFile(spark.sparkContext, "data/mnist.bz2")
    val df = spark.read.format("libsvm").load("C:/Exp/mnist.bz2")
    df.show(20)
    
    val featureSize = data.first().features.size
    println("Feature Size: " + featureSize)

    val splits = data.randomSplit(Array(0.75, 0.25), seed = 12345L)
    val (training, test) = (splits(0), splits(1))


    val pca = new PCA(featureSize/2).fit(data.map(_.features))
    val training_pca = training.map(p => p.copy(features = pca.transform(p.features)))
    val test_pca = test.map(p => p.copy(features = pca.transform(p.features)))

    val numIterations = 20
    val stepSize = 0.0001
    val model = LinearRegressionWithSGD.train(training, numIterations, stepSize)
    val model_pca = LinearRegressionWithSGD.train(training_pca, numIterations, stepSize)

    val valuesAndPreds = test.map { point =>
      val score = model.predict(point.features)
      (score, point.label)
    }

    val valuesAndPreds_pca = test_pca.map { point =>
      val score = model_pca.predict(point.features)
      (score, point.label)
    }

    val MSE = valuesAndPreds.map { case (v, p) => math.pow(v - p, 2) }.mean()
    val MSE_pca = valuesAndPreds_pca.map { case (v, p) => math.pow(v - p, 2) }.mean()

    println("Mean Squared Error = " + MSE)
    println("PCA Mean Squared Error = " + MSE_pca)  
    
    println("Model coefficients:"+ model.toString())
    println("Model with PCA coefficients:"+ model_pca.toString())
    

    spark.stop()

  }
} 
开发者ID:PacktPublishing,项目名称:Scala-and-Spark-for-Big-Data-Analytics,代码行数:61,代码来源:PCA_LinearRegression_Demo.scala



注:本文中的org.apache.spark.mllib.regression.LinearRegressionWithSGD类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Scala AWSCredentialsProvider类代码示例发布时间:2022-05-23
下一篇:
Scala FSDataOutputStream类代码示例发布时间:2022-05-23
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap