本文整理汇总了Scala中org.apache.spark.ml.Transformer类的典型用法代码示例。如果您正苦于以下问题:Scala Transformer类的具体用法?Scala Transformer怎么用?Scala Transformer使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Transformer类的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Scala代码示例。
示例1: LogisticRegression
//设置package包名称以及导入依赖的类
package com.databricks.spark.sql.perf.mllib.classification
import com.databricks.spark.sql.perf.mllib.OptionImplicits._
import com.databricks.spark.sql.perf.mllib._
import com.databricks.spark.sql.perf.mllib.data.DataGenerator
import org.apache.spark.ml.evaluation.{Evaluator, MulticlassClassificationEvaluator}
import org.apache.spark.ml.{Estimator, ModelBuilder, Transformer}
import org.apache.spark.ml
import org.apache.spark.ml.linalg.Vectors
object LogisticRegression extends BenchmarkAlgorithm
with TestFromTraining with TrainingSetFromTransformer with ScoringWithEvaluator {
override protected def initialData(ctx: MLBenchContext) = {
import ctx.params._
DataGenerator.generateContinuousFeatures(
ctx.sqlContext,
numExamples,
ctx.seed(),
numPartitions,
numFeatures)
}
override protected def trueModel(ctx: MLBenchContext): Transformer = {
val rng = ctx.newGenerator()
val coefficients =
Vectors.dense(Array.fill[Double](ctx.params.numFeatures)(2 * rng.nextDouble() - 1))
// Small intercept to prevent some skew in the data.
val intercept = 0.01 * (2 * rng.nextDouble - 1)
ModelBuilder.newLogisticRegressionModel(coefficients, intercept)
}
override def getEstimator(ctx: MLBenchContext): Estimator[_] = {
import ctx.params._
new ml.classification.LogisticRegression()
.setTol(tol)
.setMaxIter(maxIter)
.setRegParam(regParam)
}
override protected def evaluator(ctx: MLBenchContext): Evaluator =
new MulticlassClassificationEvaluator()
}
开发者ID:summerDG,项目名称:spark-sql-perf,代码行数:46,代码来源:LogisticRegression.scala
示例2: TreeOrForestClassification
//设置package包名称以及导入依赖的类
package com.databricks.spark.sql.perf.mllib.classification
import org.apache.spark.ml.{Estimator, ModelBuilder, Transformer, TreeUtils}
import org.apache.spark.ml.classification.DecisionTreeClassifier
import org.apache.spark.ml.evaluation.{Evaluator, MulticlassClassificationEvaluator}
import org.apache.spark.sql.DataFrame
import com.databricks.spark.sql.perf.mllib.OptionImplicits._
import com.databricks.spark.sql.perf.mllib._
import com.databricks.spark.sql.perf.mllib.data.DataGenerator
abstract class TreeOrForestClassification extends BenchmarkAlgorithm
with TestFromTraining with TrainingSetFromTransformer with ScoringWithEvaluator {
import TreeOrForestClassification.getFeatureArity
override protected def initialData(ctx: MLBenchContext) = {
import ctx.params._
val featureArity: Array[Int] = getFeatureArity(ctx)
val data: DataFrame = DataGenerator.generateMixedFeatures(ctx.sqlContext, numExamples,
ctx.seed(), numPartitions, featureArity)
TreeUtils.setMetadata(data, "features", featureArity)
}
override protected def trueModel(ctx: MLBenchContext): Transformer = {
ModelBuilder.newDecisionTreeClassificationModel(ctx.params.depth, ctx.params.numClasses,
getFeatureArity(ctx), ctx.seed())
}
override protected def evaluator(ctx: MLBenchContext): Evaluator =
new MulticlassClassificationEvaluator()
}
object DecisionTreeClassification extends TreeOrForestClassification {
override def getEstimator(ctx: MLBenchContext): Estimator[_] = {
import ctx.params._
new DecisionTreeClassifier()
.setMaxDepth(depth)
.setSeed(ctx.seed())
}
}
object TreeOrForestClassification {
def getFeatureArity(ctx: MLBenchContext): Array[Int] = {
val numFeatures = ctx.params.numFeatures
val fourthFeatures = numFeatures / 4
Array.fill[Int](fourthFeatures)(2) ++ // low-arity categorical
Array.fill[Int](fourthFeatures)(20) ++ // high-arity categorical
Array.fill[Int](numFeatures - 2 * fourthFeatures)(0) // continuous
}
}
开发者ID:summerDG,项目名称:spark-sql-perf,代码行数:56,代码来源:DecisionTreeClassification.scala
示例3: GBTClassification
//设置package包名称以及导入依赖的类
package com.databricks.spark.sql.perf.mllib.classification
import org.apache.spark.ml.{Estimator, ModelBuilder, Transformer, TreeUtils}
import org.apache.spark.ml.classification.GBTClassifier
import org.apache.spark.ml.evaluation.{Evaluator, MulticlassClassificationEvaluator}
import org.apache.spark.sql._
import com.databricks.spark.sql.perf.mllib._
import com.databricks.spark.sql.perf.mllib.OptionImplicits._
import com.databricks.spark.sql.perf.mllib.data.DataGenerator
object GBTClassification extends BenchmarkAlgorithm
with TestFromTraining with TrainingSetFromTransformer with ScoringWithEvaluator {
import TreeOrForestClassification.getFeatureArity
override protected def initialData(ctx: MLBenchContext) = {
import ctx.params._
val featureArity: Array[Int] = getFeatureArity(ctx)
val data: DataFrame = DataGenerator.generateMixedFeatures(ctx.sqlContext, numExamples,
ctx.seed(), numPartitions, featureArity)
TreeUtils.setMetadata(data, "features", featureArity)
}
override protected def trueModel(ctx: MLBenchContext): Transformer = {
import ctx.params._
// We add +1 to the depth to make it more likely that many iterations of boosting are needed
// to model the true tree.
ModelBuilder.newDecisionTreeClassificationModel(depth + 1, numClasses, getFeatureArity(ctx),
ctx.seed())
}
override def getEstimator(ctx: MLBenchContext): Estimator[_] = {
import ctx.params._
// TODO: subsamplingRate, featureSubsetStrategy
// TODO: cacheNodeIds, checkpoint?
new GBTClassifier()
.setMaxDepth(depth)
.setMaxIter(maxIter)
.setSeed(ctx.seed())
}
override protected def evaluator(ctx: MLBenchContext): Evaluator =
new MulticlassClassificationEvaluator()
}
开发者ID:summerDG,项目名称:spark-sql-perf,代码行数:47,代码来源:GBTClassification.scala
示例4: GLMRegression
//设置package包名称以及导入依赖的类
package com.databricks.spark.sql.perf.mllib.regression
import org.apache.spark.ml.evaluation.{Evaluator, RegressionEvaluator}
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.regression.GeneralizedLinearRegression
import org.apache.spark.ml.{Estimator, ModelBuilder, Transformer}
import com.databricks.spark.sql.perf.mllib.OptionImplicits._
import com.databricks.spark.sql.perf.mllib._
import com.databricks.spark.sql.perf.mllib.data.DataGenerator
object GLMRegression extends BenchmarkAlgorithm with TestFromTraining with
TrainingSetFromTransformer with ScoringWithEvaluator {
override protected def initialData(ctx: MLBenchContext) = {
import ctx.params._
DataGenerator.generateContinuousFeatures(
ctx.sqlContext,
numExamples,
ctx.seed(),
numPartitions,
numFeatures)
}
override protected def trueModel(ctx: MLBenchContext): Transformer = {
import ctx.params._
val rng = ctx.newGenerator()
val coefficients =
Vectors.dense(Array.fill[Double](ctx.params.numFeatures)(2 * rng.nextDouble() - 1))
// Small intercept to prevent some skew in the data.
val intercept = 0.01 * (2 * rng.nextDouble - 1)
val m = ModelBuilder.newGLR(coefficients, intercept)
m.set(m.link, link.get)
m.set(m.family, family.get)
m
}
override def getEstimator(ctx: MLBenchContext): Estimator[_] = {
import ctx.params._
new GeneralizedLinearRegression()
.setLink(link)
.setFamily(family)
.setRegParam(regParam)
.setMaxIter(maxIter)
.setTol(tol)
}
override protected def evaluator(ctx: MLBenchContext): Evaluator =
new RegressionEvaluator()
}
开发者ID:summerDG,项目名称:spark-sql-perf,代码行数:52,代码来源:GLMRegression.scala
示例5: LinearRegression
//设置package包名称以及导入依赖的类
package com.databricks.spark.sql.perf.mllib.regression
import org.apache.spark.ml
import org.apache.spark.ml.evaluation.{Evaluator, RegressionEvaluator}
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.{Estimator, ModelBuilder, Transformer}
import com.databricks.spark.sql.perf.mllib.OptionImplicits._
import com.databricks.spark.sql.perf.mllib._
import com.databricks.spark.sql.perf.mllib.data.DataGenerator
object LinearRegression extends BenchmarkAlgorithm with TestFromTraining with
TrainingSetFromTransformer with ScoringWithEvaluator {
override protected def initialData(ctx: MLBenchContext) = {
import ctx.params._
DataGenerator.generateContinuousFeatures(
ctx.sqlContext,
numExamples,
ctx.seed(),
numPartitions,
numFeatures)
}
override protected def trueModel(ctx: MLBenchContext): Transformer = {
val rng = ctx.newGenerator()
val coefficients =
Vectors.dense(Array.fill[Double](ctx.params.numFeatures)(2 * rng.nextDouble() - 1))
// Small intercept to prevent some skew in the data.
val intercept = 0.01 * (2 * rng.nextDouble - 1)
ModelBuilder.newLinearRegressionModel(coefficients, intercept)
}
override def getEstimator(ctx: MLBenchContext): Estimator[_] = {
import ctx.params._
new ml.regression.LinearRegression()
.setSolver("l-bfgs")
.setRegParam(regParam)
.setMaxIter(maxIter)
.setTol(tol)
}
override protected def evaluator(ctx: MLBenchContext): Evaluator =
new RegressionEvaluator()
}
开发者ID:summerDG,项目名称:spark-sql-perf,代码行数:47,代码来源:LinearRegression.scala
示例6: TransformerWithInfo
//设置package包名称以及导入依赖的类
package it.agilelab.bigdata.wasp.consumers.MlModels
import it.agilelab.bigdata.wasp.core.models.MlModelOnlyInfo
import org.apache.spark.ml.Transformer
import org.apache.spark.ml.param.Params
import org.joda.time.DateTime
import reactivemongo.bson.BSONObjectID
case class TransformerWithInfo(name: String, version: String,
transformer: Transformer with Params,
timestamp: Long = DateTime.now().getMillis,
favorite: Boolean = false, description: String = "",
_id: Option[BSONObjectID] = None,
modelFileId: Option[BSONObjectID] = None) {
val className: String = transformer.getClass.getName
def toOnlyInfo(modelFileId: BSONObjectID) = {
MlModelOnlyInfo(_id = _id, name = name, version = version, className = Some(className),
timestamp = Some(timestamp), favorite = favorite, description = description,
modelFileId = Some(modelFileId)
)
}
def toOnlyInfo = {
MlModelOnlyInfo(_id = _id, name = name, version = version, className = Some(className),
timestamp = Some(timestamp), favorite = favorite, description = description,
modelFileId = modelFileId)
}
}
object TransformerWithInfo {
def create(mlModelOnlyInfo: MlModelOnlyInfo, transformer: Transformer with Params): TransformerWithInfo = {
TransformerWithInfo(
_id = mlModelOnlyInfo._id,
name = mlModelOnlyInfo.name,
version = mlModelOnlyInfo.version,
transformer = transformer,
timestamp = mlModelOnlyInfo.timestamp.getOrElse(DateTime.now().getMillis),
favorite = mlModelOnlyInfo.favorite,
description = mlModelOnlyInfo.description,
modelFileId = mlModelOnlyInfo.modelFileId
)
}
}
开发者ID:agile-lab-dev,项目名称:wasp,代码行数:47,代码来源:TransformerWithInfo.scala
示例7: setFunction
//设置package包名称以及导入依赖的类
package spark.feature
import org.apache.spark.ml.Transformer
import org.apache.spark.ml.attribute.AttributeGroup
import org.apache.spark.ml.param.{ParamMap, _}
import org.apache.spark.ml.util._
import org.apache.spark.sql.functions.{col, udf}
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.{DataFrame, UserDefinedFunction}
def setFunction(value: String=>Double) = set(function, value)
def getFunction() = $(function)
override def transform(dataset: DataFrame): DataFrame = {
val outputSchema = transformSchema(dataset.schema)
val metadata = outputSchema($(outputCol)).metadata
val dummy = udf { x: Any => $(expr) }
var data = dataset.select(col("*"), dummy(col($(inputCols).head)).as("0"))
val substitute: (String => ((String, Double) => String)) = name => (exp, elem) => exp.replace(name, elem.toString)
def subst(v: String) = udf(substitute(v))
$(inputCols).view.zipWithIndex foreach { case (v, i) => data = data.select(col("*"), subst(v)(data(i.toString), data(v)).as((i + 1).toString)).drop(i.toString) }
val eval = udf($(function))
data.select(col("*"), eval(data($(inputCols).length.toString)).as($(outputCol), metadata)).drop($(inputCols).length.toString)
}
override def transformSchema(schema: StructType): StructType = {
// TODO: Assertions on inputCols
val attrGroup = new AttributeGroup($(outputCol), $(numFeatures))
val col = attrGroup.toStructField()
require(!schema.fieldNames.contains(col.name), s"Column ${col.name} already exists.")
StructType(schema.fields :+ col)
}
override def copy(extra: ParamMap): FeatureFuTransformer = defaultCopy(extra)
}
开发者ID:laxmanjangley,项目名称:FFrame,代码行数:38,代码来源:FeatureFuTransformer.scala
示例8: addConverter
//设置package包名称以及导入依赖的类
package org.apache.spark.ml.mleap.converter.runtime
import com.truecar.mleap.runtime.transformer
import org.apache.spark.ml.Transformer
import scala.reflect.ClassTag
trait SparkTransformerConverter {
var converters: Map[String, TransformerToMleap[_ <: Transformer, _ <: transformer.Transformer]] = Map()
def addConverter[T <: Transformer, MT <: transformer.Transformer](converter: TransformerToMleap[T, MT])
(implicit ct: ClassTag[T]): TransformerToMleap[T, MT] = {
val name = ct.runtimeClass.getCanonicalName
converters += (name -> converter)
converter
}
def getConverter(key: String): TransformerToMleap[_ <: Transformer, _ <: transformer.Transformer] = {
converters(key)
}
def convert(t: Transformer): transformer.Transformer = {
getConverter(t.getClass.getCanonicalName).toMleapLifted(t)
}
}
开发者ID:TrueCar,项目名称:mleap,代码行数:27,代码来源:SparkTransformerConverter.scala
示例9: TransformerToMleap
//设置package包名称以及导入依赖的类
package org.apache.spark.ml.mleap.converter.runtime
import org.apache.spark.ml.Transformer
object TransformerToMleap {
def apply[T, MT](t: T)
(implicit ttm: TransformerToMleap[T, MT]): MT = {
ttm.toMleap(t)
}
def toMleap[T, MT](t: T)
(implicit ttm: TransformerToMleap[T, MT]): MT = {
ttm.toMleap(t)
}
}
trait TransformerToMleap[T, MT] {
def toMleap(t: T): MT
def toMleapLifted(t: Transformer): MT = {
toMleap(t.asInstanceOf[T])
}
}
开发者ID:TrueCar,项目名称:mleap,代码行数:24,代码来源:TransformerToMleap.scala
示例10: TreeOrForestClassification
//设置package包名称以及导入依赖的类
package com.databricks.spark.sql.perf.mllib.classification
import org.apache.spark.ml.{Estimator, ModelBuilder, Transformer, TreeUtils}
import org.apache.spark.ml.classification.DecisionTreeClassifier
import org.apache.spark.ml.evaluation.{Evaluator, MulticlassClassificationEvaluator}
import org.apache.spark.sql.DataFrame
import com.databricks.spark.sql.perf.mllib.OptionImplicits._
import com.databricks.spark.sql.perf.mllib._
import com.databricks.spark.sql.perf.mllib.data.DataGenerator
abstract class TreeOrForestClassification extends BenchmarkAlgorithm
with TestFromTraining with TrainingSetFromTransformer with ScoringWithEvaluator {
import TreeOrForestClassification.getFeatureArity
override protected def initialData(ctx: MLBenchContext) = {
import ctx.params._
val featureArity: Array[Int] = getFeatureArity(ctx)
val data: DataFrame = DataGenerator.generateMixedFeatures(ctx.sqlContext, numExamples,
ctx.seed(), numPartitions, featureArity)
TreeUtils.setMetadata(data, "label", numClasses, "features", featureArity)
}
override protected def trueModel(ctx: MLBenchContext): Transformer = {
ModelBuilder.newDecisionTreeClassificationModel(ctx.params.depth, ctx.params.numClasses,
getFeatureArity(ctx), ctx.seed())
}
override protected def evaluator(ctx: MLBenchContext): Evaluator =
new MulticlassClassificationEvaluator()
}
object DecisionTreeClassification extends TreeOrForestClassification {
override def getEstimator(ctx: MLBenchContext): Estimator[_] = {
import ctx.params._
new DecisionTreeClassifier()
.setMaxDepth(depth)
.setSeed(ctx.seed())
}
}
object TreeOrForestClassification {
def getFeatureArity(ctx: MLBenchContext): Array[Int] = {
val numFeatures = ctx.params.numFeatures
val fourthFeatures = numFeatures / 4
Array.fill[Int](fourthFeatures)(2) ++ // low-arity categorical
Array.fill[Int](fourthFeatures)(20) ++ // high-arity categorical
Array.fill[Int](numFeatures - 2 * fourthFeatures)(0) // continuous
}
}
开发者ID:sparkonpower,项目名称:spark-sql-perf-spark2.0.0,代码行数:56,代码来源:DecisionTreeClassification.scala
示例11: GBTClassification
//设置package包名称以及导入依赖的类
package com.databricks.spark.sql.perf.mllib.classification
import org.apache.spark.ml.{Estimator, ModelBuilder, Transformer, TreeUtils}
import org.apache.spark.ml.classification.GBTClassifier
import org.apache.spark.ml.evaluation.{Evaluator, MulticlassClassificationEvaluator}
import org.apache.spark.sql._
import com.databricks.spark.sql.perf.mllib._
import com.databricks.spark.sql.perf.mllib.OptionImplicits._
import com.databricks.spark.sql.perf.mllib.data.DataGenerator
object GBTClassification extends BenchmarkAlgorithm
with TestFromTraining with TrainingSetFromTransformer with ScoringWithEvaluator {
import TreeOrForestClassification.getFeatureArity
override protected def initialData(ctx: MLBenchContext) = {
import ctx.params._
val featureArity: Array[Int] = getFeatureArity(ctx)
val data: DataFrame = DataGenerator.generateMixedFeatures(ctx.sqlContext, numExamples,
ctx.seed(), numPartitions, featureArity)
TreeUtils.setMetadata(data, "label", numClasses, "features", featureArity)
}
override protected def trueModel(ctx: MLBenchContext): Transformer = {
import ctx.params._
// We add +1 to the depth to make it more likely that many iterations of boosting are needed
// to model the true tree.
ModelBuilder.newDecisionTreeClassificationModel(depth + 1, numClasses, getFeatureArity(ctx),
ctx.seed())
}
override def getEstimator(ctx: MLBenchContext): Estimator[_] = {
import ctx.params._
// TODO: subsamplingRate, featureSubsetStrategy
// TODO: cacheNodeIds, checkpoint?
new GBTClassifier()
.setMaxDepth(depth)
.setMaxIter(maxIter)
.setSeed(ctx.seed())
}
override protected def evaluator(ctx: MLBenchContext): Evaluator =
new MulticlassClassificationEvaluator()
}
开发者ID:sparkonpower,项目名称:spark-sql-perf-spark2.0.0,代码行数:47,代码来源:GBTClassification.scala
注:本文中的org.apache.spark.ml.Transformer类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论