本文整理汇总了Scala中org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS类的典型用法代码示例。如果您正苦于以下问题:Scala LogisticRegressionWithLBFGS类的具体用法?Scala LogisticRegressionWithLBFGS怎么用?Scala LogisticRegressionWithLBFGS使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了LogisticRegressionWithLBFGS类的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Scala代码示例。
示例1: MllibLBFGS
//设置package包名称以及导入依赖的类
package optimizers
import breeze.linalg.{DenseVector, Vector}
import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS
import org.apache.spark.mllib.optimization.{L1Updater, SimpleUpdater, SquaredL2Updater, Updater}
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
import utils.Functions._
class MllibLBFGS(val data: RDD[LabeledPoint],
loss: LossFunction,
regularizer: Regularizer,
params: LBFGSParameters
) extends Optimizer(loss, regularizer) {
val opt = new LogisticRegressionWithLBFGS
val reg: Updater = (regularizer: Regularizer) match {
case _: L1Regularizer => new L1Updater
case _: L2Regularizer => new SquaredL2Updater
case _: Unregularized => new SimpleUpdater
}
opt.optimizer.
setNumIterations(params.iterations).
setConvergenceTol(params.convergenceTol).
setNumCorrections(params.numCorrections).
setRegParam(regularizer.lambda).
setUpdater(reg)
override def optimize(): Vector[Double] = {
val model = opt.run(data)
val w = model.weights.toArray
return DenseVector(w)
}
}
开发者ID:mlbench,项目名称:mlbench,代码行数:38,代码来源:MllibLBFGS.scala
示例2: LogisticRegressionTest
//设置package包名称以及导入依赖的类
package cn.edu.bjtu
import org.apache.spark.SparkConf
import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.sql.SparkSession
object LogisticRegressionTest {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf()
.setAppName("LogisticRegressionTest")
.setMaster("spark://master:7077")
.setJars(Array("/home/hadoop/LogisticRegression.jar"))
val spark = SparkSession.builder()
.config(sparkConf)
.getOrCreate()
spark.sparkContext.setLogLevel("WARN")
val data = MLUtils.loadLibSVMFile(spark.sparkContext, "hdfs://master:9000/sample_formatted.txt")
val splits = data.randomSplit(Array(0.7, 0.3), seed = 11L)
val training = splits(0).cache()
val test = splits(1)
// Run training algorithm to build the model
val model = new LogisticRegressionWithLBFGS()
.setNumClasses(2)
.run(training)
// Compute raw scores on the test set.
val predictionAndLabels = test.map { case LabeledPoint(label, features) =>
val prediction = model.predict(features)
(prediction, label)
}
// Get evaluation metrics.
val metrics = new BinaryClassificationMetrics(predictionAndLabels)
val auROC = metrics.areaUnderROC()
println("Area under ROC = " + auROC)
println("Sensitivity = " + predictionAndLabels.filter(x => x._1 == x._2 && x._1 == 1.0).count().toDouble / predictionAndLabels.filter(x => x._2 == 1.0).count().toDouble)
println("Specificity = " + predictionAndLabels.filter(x => x._1 == x._2 && x._1 == 0.0).count().toDouble / predictionAndLabels.filter(x => x._2 == 0.0).count().toDouble)
println("Accuracy = " + predictionAndLabels.filter(x => x._1 == x._2).count().toDouble / predictionAndLabels.count().toDouble)
}
}
开发者ID:XiaoyuGuo,项目名称:DataFusionClass,代码行数:51,代码来源:LogisticRegressionTest.scala
示例3: LRAccuracyTest
//设置package包名称以及导入依赖的类
package MLlib
import org.apache.log4j.{Level, Logger}
import org.apache.spark.mllib.classification.{LogisticRegressionWithLBFGS, LogisticRegressionModel, SparseLogisticRegressionWithLBFGS}
import org.apache.spark.mllib.evaluation.MulticlassMetrics
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.{SparkContext, SparkConf}
object LRAccuracyTest {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName(s"LogisticRegressionTest with $args").setMaster("local")
val sc = new SparkContext(conf)
Logger.getRootLogger.setLevel(Level.WARN)
val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt").map(
l => LabeledPoint(l.label, l.features.toSparse))
// Split data into training (60%) and test (40%).
val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L)
val training = splits(0).cache()
val test = splits(1)
// Run training algorithm to build the model
val model = new SparseLogisticRegressionWithLBFGS()
.setNumClasses(5)
.run(training)
// Compute raw scores on the test set.
val predictionAndLabels = test.map { case LabeledPoint(label, features) =>
val prediction = model.predict(features)
(prediction, label)
}
// Get evaluation metrics.
val metrics = new MulticlassMetrics(predictionAndLabels)
val precision = metrics.precision
println("Precision = " + precision)
}
}
开发者ID:intel-analytics,项目名称:SparseML,代码行数:47,代码来源:LRAccuracyTest.scala
注:本文中的org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论