• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Scala BinaryClassificationEvaluator类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Scala中org.apache.spark.ml.evaluation.BinaryClassificationEvaluator的典型用法代码示例。如果您正苦于以下问题:Scala BinaryClassificationEvaluator类的具体用法?Scala BinaryClassificationEvaluator怎么用?Scala BinaryClassificationEvaluator使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了BinaryClassificationEvaluator类的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Scala代码示例。

示例1: LRCV

//设置package包名称以及导入依赖的类
package com.ferhtaydn.rater

import org.apache.spark.SparkContext
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.feature.{ StringIndexerModel, VectorAssembler }
import org.apache.spark.ml.tuning.{ CrossValidator, CrossValidatorModel, ParamGridBuilder }
import org.apache.spark.mllib.linalg.Matrix
import org.apache.spark.sql.{ DataFrame, Row, SQLContext }

class LRCV(sc: SparkContext) {

  implicit val sqlContext = new SQLContext(sc)

  val lr = new LogisticRegression().setMaxIter(10).setFeaturesCol("scaledFeatures")

  val paramGrid = new ParamGridBuilder()
    .addGrid(lr.regParam, Array(0.1, 0.01))
    .build()

  val assembler = new VectorAssembler()
    .setInputCols(Array("gender", "age", "weight", "height", "indexedJob"))
    .setOutputCol("features")

  val pipeline = new Pipeline()
    .setStages(Array(assembler, standardScaler("features"), lr))

  val cv = new CrossValidator()
    .setEstimator(pipeline)
    .setEvaluator(new BinaryClassificationEvaluator)
    .setEstimatorParamMaps(paramGrid)
    .setNumFolds(10)

  def train(df: DataFrame): (StringIndexerModel, CrossValidatorModel, Matrix) = {

    // need to index strings on all data to not missing the job fields.
    // other alternative can be manually assign values for each job like gender.
    val indexerModel = stringIndexer("job").fit(df)
    val indexed = indexerModel.transform(df)

    val splits = indexed.randomSplit(Array(0.8, 0.2))
    val training = splits(0).cache()
    val test = splits(1)

    val cvModel = cv.fit(training)

    val predictionAndLabels = cvModel
      .transform(test)
      .select("label", "prediction").map {
        case Row(label: Double, prediction: Double) ?
          (prediction, label)
      }

    printBinaryMetrics(predictionAndLabels)

    (indexerModel, cvModel, confusionMatrix(predictionAndLabels))

  }

} 
开发者ID:ferhtaydn,项目名称:canceRater,代码行数:62,代码来源:LRCV.scala



注:本文中的org.apache.spark.ml.evaluation.BinaryClassificationEvaluator类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Scala UTF_8类代码示例发布时间:2022-05-23
下一篇:
Scala MessageAndMetadata类代码示例发布时间:2022-05-23
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap