• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Scala HashingTF类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Scala中org.apache.spark.ml.feature.HashingTF的典型用法代码示例。如果您正苦于以下问题:Scala HashingTF类的具体用法?Scala HashingTF怎么用?Scala HashingTF使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了HashingTF类的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Scala代码示例。

示例1: movies

//设置package包名称以及导入依赖的类
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.NaiveBayes
import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
import org.apache.spark.sql.SparkSession

object movies {

  case class Sentence(sentence: String,label: Double)

  def main(args:Array[String]) {

    val spark = SparkSession
      .builder
      .appName("Movies Reviews")
      .config("spark.master", "local")
      .getOrCreate()


    // Prepare training documents from a list of (id, text, label) tuples.
    val neg = spark.sparkContext.textFile("file:///data/train/neg/").repartition(4)
      .map(w => Sentence(w, 0.0))

    val pos = spark.sparkContext.textFile("file:///data/train/pos/").repartition(4)
      .map(w => Sentence(w, 1.0))

    val test = spark.sparkContext.wholeTextFiles("file:///data/test/").repartition(4)
      .map({case(file,sentence) => (file.split("/").last.split("\\.")(0),sentence)})


    val training=neg.union(pos)
    val trainingDF=spark.createDataFrame(training)
    val testDF=spark.createDataFrame(test)

    // Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and Naive Bayes
    val tokenizer = new Tokenizer()
      .setInputCol("sentence")
      .setOutputCol("words")
    val hashingTF = new HashingTF()
      .setInputCol(tokenizer.getOutputCol)
      .setOutputCol("features")
    val nb = new NaiveBayes()

    val pipeline = new Pipeline()
      .setStages(Array(tokenizer, hashingTF, nb))

    // Fit the pipeline to training documents.
    val model = pipeline.fit(trainingDF)

    // Make predictions on test documents.
    model.transform(testDF).repartition(1)
      .select("file", "prediction")
      .write.format("csv")
      .option("header","true")
      .option("delimiter","\t")
      .save("/tmp/spark-prediction")
    spark.stop()
      }
  } 
开发者ID:evaliotiri,项目名称:NaiveBayes,代码行数:59,代码来源:naiveBayes.scala


示例2: MLClassification

//设置package包名称以及导入依赖的类
import io.hydrosphere.mist.api._
import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
import org.apache.spark.sql.SparkSession


object MLClassification extends MLMistJob {
  def session: SparkSession = SparkSession
    .builder()
    .appName(context.appName)
    .config(context.getConf)
    .getOrCreate()

  def train(): Map[String, Any] = {
    val training = session.createDataFrame(Seq(
      (0L, "a b c d e spark", 1.0),
      (1L, "b d", 0.0),
      (2L, "spark f g h", 1.0),
      (3L, "hadoop mapreduce", 0.0)
    )).toDF("id", "text", "label")

    val tokenizer = new Tokenizer()
      .setInputCol("text")
      .setOutputCol("words")
    val hashingTF = new HashingTF()
      .setNumFeatures(1000)
      .setInputCol(tokenizer.getOutputCol)
      .setOutputCol("features")
    val lr = new LogisticRegression()
      .setMaxIter(10)
      .setRegParam(0.01)
    val pipeline = new Pipeline()
      .setStages(Array(tokenizer, hashingTF, lr))

    val model = pipeline.fit(training)

    model.write.overwrite().save("regression")

    Map.empty[String, Any]
  }

  def serve(text: List[String]): Map[String, Any] = {
    import LocalPipelineModel._

    val pipeline = PipelineLoader.load(s"regression")
    val data = LocalData(
      LocalDataColumn("text", text)
    )
    val result: LocalData = pipeline.transform(data)
    Map("result" -> result.select("text", "prediction").toMapList)
  }
} 
开发者ID:Hydrospheredata,项目名称:mist,代码行数:55,代码来源:MLClassification.scala


示例3: LocalHashingTF

//设置package包名称以及导入依赖的类
package io.hydrosphere.spark_ml_serving.preprocessors

import io.hydrosphere.spark_ml_serving._
import org.apache.spark.ml.feature.HashingTF
import org.apache.spark.mllib.feature.{HashingTF => HTF}

import scala.collection.mutable

class LocalHashingTF(override val sparkTransformer: HashingTF) extends LocalTransformer[HashingTF] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val htf = new HTF(sparkTransformer.getNumFeatures).setBinary(sparkTransformer.getBinary)
        val newData = column.data.map((m) => htf.transform(m.asInstanceOf[mutable.WrappedArray[String]]))
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData))
      case None => localData
    }
  }
}

object LocalHashingTF extends LocalModel[HashingTF] {
  override def load(metadata: Metadata, data: Map[String, Any]): HashingTF = {
    new HashingTF(metadata.uid)
      .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String])
      .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String])
      .setBinary(metadata.paramMap("binary").asInstanceOf[Boolean])
      .setNumFeatures(metadata.paramMap("numFeatures").asInstanceOf[Number].intValue())
  }

  override implicit def getTransformer(transformer: HashingTF): LocalTransformer[HashingTF] = new LocalHashingTF(transformer)
} 
开发者ID:Hydrospheredata,项目名称:spark-ml-serving,代码行数:32,代码来源:LocalHashingTF.scala


示例4: HashingTF

//设置package包名称以及导入依赖的类
package com.lhcg.ml

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}
import org.apache.spark.sql.SQLContext


object HashingTF {

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("HashingTF")
//      .setMaster("local[2]")
    val spark = new SparkContext(conf)
    val sqlContext = new SQLContext(spark)

    val sentenceData = sqlContext.createDataFrame(Seq(
      (0, "Hi I heard about Spark"),
      (0, "I wish Java could use case classes"),
      (1, "Logistic regression models are neat")
    )).toDF("label", "sentence")

    val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
    val wordsData = tokenizer.transform(sentenceData)
    val hashingTF = new HashingTF()
      .setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(20)
    val featurizedData = hashingTF.transform(wordsData)
    val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")
    val idfModel = idf.fit(featurizedData)
    val rescaledData = idfModel.transform(featurizedData)
    rescaledData.select("features", "label").take(3).foreach(println)
  }
} 
开发者ID:lhcg,项目名称:lovespark,代码行数:33,代码来源:HashingTF.scala


示例5: MllibDemo

//设置package包名称以及导入依赖的类
package com.wallace.spark.sparkmllibdemo

import com.wallace.common.LogSupport
import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}
import org.apache.spark.sql.SparkSession



object MllibDemo extends App with LogSupport {
  val warehouseLocation = System.getProperty("user.dir") + "/" + "spark-warehouse"
  val spark = SparkSession
    .builder()
    .master("local[*]")
    .appName("RddConvertToDataFrame")
    .config("spark.sql.warehouse.dir", warehouseLocation)
    .getOrCreate()
  val sc = spark.sparkContext

  val sentenceData = spark.createDataFrame(Seq(
    (0, "Hi I heard about Spark"),
    (0, "I wish Java could use case classes"),
    (1, "Logistic regression models are neat")
  )).toDF("label", "sentence")

  val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
  val wordsData = tokenizer.transform(sentenceData)
  val hashingTF = new HashingTF().setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(20)
  val featurizedData = hashingTF.transform(wordsData)

  val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")
  val idfModel = idf.fit(featurizedData)
  val rescaledData = idfModel.transform(featurizedData)
  rescaledData.select("features", "label").take(3).foreach(println)

  spark.stop()
} 
开发者ID:BiyuHuang,项目名称:CodePrototypesDemo,代码行数:37,代码来源:MllibDemo.scala


示例6: LocalHashingTF

//设置package包名称以及导入依赖的类
package io.hydrosphere.mist.api.ml.preprocessors

import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.feature.HashingTF
import org.apache.spark.mllib.feature.{HashingTF => HTF}

import scala.collection.mutable

class LocalHashingTF(override val sparkTransformer: HashingTF) extends LocalTransformer[HashingTF] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val htf = new HTF(sparkTransformer.getNumFeatures).setBinary(sparkTransformer.getBinary)
        val newData = column.data.map((m) => htf.transform(m.asInstanceOf[mutable.WrappedArray[String]]))
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData))
      case None => localData
    }
  }
}

object LocalHashingTF extends LocalModel[HashingTF] {
  override def load(metadata: Metadata, data: Map[String, Any]): HashingTF = {
    new HashingTF(metadata.uid)
      .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String])
      .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String])
      .setBinary(metadata.paramMap("binary").asInstanceOf[Boolean])
      .setNumFeatures(metadata.paramMap("numFeatures").asInstanceOf[Number].intValue())
  }

  override implicit def getTransformer(transformer: HashingTF): LocalTransformer[HashingTF] = new LocalHashingTF(transformer)
} 
开发者ID:Hydrospheredata,项目名称:mist,代码行数:32,代码来源:LocalHashingTF.scala


示例7: TFIDFJob

//设置package包名称以及导入依赖的类
import io.hydrosphere.mist.api._
import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}
import org.apache.spark.mllib.linalg.{Vector => LVector}
import org.apache.spark.ml.Pipeline
import org.apache.spark.sql.SparkSession


object TFIDFJob extends MLMistJob {
  def session: SparkSession = SparkSession
    .builder()
    .appName(context.appName)
    .config(context.getConf)
    .getOrCreate()

  def train(savePath: String): Map[String, Any] = {

    val df = session.createDataFrame(Seq(
      (0, "Provectus rocks!"),
      (0, "Machine learning for masses!"),
      (1, "BigData is a hot topick right now")
    )).toDF("label", "sentence")

    val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
    val hashingTF = new HashingTF().setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(20)
    val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")

    val pipeline = new Pipeline().setStages(Array(tokenizer, hashingTF, idf))

    val model = pipeline.fit(df)

    model.write.overwrite().save(savePath)
    Map.empty[String, Any]
  }

  def serve(modelPath: String, sentences: List[String]): Map[String, Any] = {
    import LocalPipelineModel._

    val pipeline = PipelineLoader.load(modelPath)
    val data = LocalData(LocalDataColumn("sentence", sentences))

    val result = pipeline.transform(data)
    val response = result.select("sentence", "features").toMapList.map(rowMap => {
      val conv = rowMap("features").asInstanceOf[LVector].toArray
      rowMap + ("features" -> conv)
    })
    Map("result" -> response)
  }
} 
开发者ID:Hydrospheredata,项目名称:mist,代码行数:50,代码来源:TFIDFJob.scala


示例8: ets

//设置package包名称以及导入依赖的类
package sparkml

/**
  * Created by I311352 on 3/27/2017.
  */
import org.apache.spark.sql.SparkSession
import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}

class ets {

}

object tfidf extends App {
  val spark = SparkSession.builder().appName("TIDFExample").master("local[2]").getOrCreate()

  val sentenceData = spark.createDataFrame(Seq(
    (0.0, "Hi I heard about Spark"),
    (0.0, "I wish Java could use case classes"),
    (1.0, "Logistic regression models are neat")
  )).toDF("label", "sentence")

  val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
  val wordsData = tokenizer.transform(sentenceData)

  val hashingTF = new HashingTF()
    .setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(20)

  val featurizedData = hashingTF.transform(wordsData)
  // alternatively, CountVectorizer can also be used to get term frequency vectors

  val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")
  val idfModel = idf.fit(featurizedData)

  val rescaledData = idfModel.transform(featurizedData)
  rescaledData.select("label", "features").show()
} 
开发者ID:compasses,项目名称:elastic-spark,代码行数:37,代码来源:ets.scala



注:本文中的org.apache.spark.ml.feature.HashingTF类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Scala Edge类代码示例发布时间:2022-05-23
下一篇:
Scala KryoRegistrator类代码示例发布时间:2022-05-23
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap