• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Scala Statistics类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Scala中org.apache.spark.mllib.stat.Statistics的典型用法代码示例。如果您正苦于以下问题:Scala Statistics类的具体用法?Scala Statistics怎么用?Scala Statistics使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了Statistics类的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Scala代码示例。

示例1: SimpleApp

//设置package包名称以及导入依赖的类
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.mllib.stat.Statistics
import org.apache.spark.mllib.linalg.{Vector, Vectors}

object SimpleApp {
  def main(args: Array[String]) {
    val conf = new SparkConf().setAppName("Simple Application")
    val sc = new SparkContext(conf)

    val data = Array(1,2,3)
    val distData = sc.parallelize(data)
    val vectorData = distData.map(x => Vectors.dense(x))
    
    val summary = Statistics.colStats(vectorData)

    println("mean is: %s".format(summary.mean))
    println("max is: %s".format(summary.max))
    println("min is: %s".format(summary.min))


    //find correlation
    // student, exam1, exam2, exam3
    val data = sc.parallelize(Array("111, 60, 65, 73", "222, 98,95,88", "333, 56,67,62"))
    val vectorRdd = data.map((line: String) => line.split(",").drop(1).map((ele: String) => ele.toDouble)).map(Vectors.dense)
    val corrMatrix = Statistics.corr(vectorRdd)
  }
} 
开发者ID:mykumar,项目名称:SparkScalaInternalExperiements,代码行数:30,代码来源:SimpleApp.scala


示例2: StatisticsApp

//设置package包名称以及导入依赖的类
package org.apress.prospark

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.stat.Statistics
import org.apache.spark.streaming.Seconds
import org.apache.spark.streaming.StreamingContext

object StatisticsApp {

  def main(args: Array[String]) {
    if (args.length != 4) {
      System.err.println(
        "Usage: StatisticsApp <appname> <batchInterval> <hostname> <port>")
      System.exit(1)
    }
    val Seq(appName, batchInterval, hostname, port) = args.toSeq

    val conf = new SparkConf()
      .setAppName(appName)
      .setJars(SparkContext.jarOfClass(this.getClass).toSeq)

    val ssc = new StreamingContext(conf, Seconds(batchInterval.toInt))

    val substream = ssc.socketTextStream(hostname, port.toInt)
      .filter(!_.contains("NaN"))
      .map(_.split(" "))
      .filter(f => f(1) != "0")
      .map(f => f.map(f => f.toDouble))

    substream.map(f => Vectors.dense(f.slice(1, 5))).foreachRDD(rdd => {
      val stats = Statistics.colStats(rdd)
      println("Count: " + stats.count)
      println("Max: " + stats.max.toArray.mkString(" "))
      println("Min: " + stats.min.toArray.mkString(" "))
      println("Mean: " + stats.mean.toArray.mkString(" "))
      println("L1-Norm: " + stats.normL1.toArray.mkString(" "))
      println("L2-Norm: " + stats.normL2.toArray.mkString(" "))
      println("Number of non-zeros: " + stats.numNonzeros.toArray.mkString(" "))
      println("Varience: " + stats.variance.toArray.mkString(" "))
    })

    ssc.start()
    ssc.awaitTermination()
  }

} 
开发者ID:ZubairNabi,项目名称:prosparkstreaming,代码行数:49,代码来源:L9-3Statistics.scala


示例3: ChiSqApp

//设置package包名称以及导入依赖的类
package org.apress.prospark

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.stat.Statistics
import org.apache.spark.streaming.Seconds
import org.apache.spark.streaming.StreamingContext

object ChiSqApp {

  def main(args: Array[String]) {
    if (args.length != 4) {
      System.err.println(
        "Usage: ChiSqApp <appname> <batchInterval> <hostname> <port>")
      System.exit(1)
    }
    val Seq(appName, batchInterval, hostname, port) = args.toSeq

    val conf = new SparkConf()
      .setAppName(appName)
      .setJars(SparkContext.jarOfClass(this.getClass).toSeq)

    val ssc = new StreamingContext(conf, Seconds(batchInterval.toInt))

    val substream = ssc.socketTextStream(hostname, port.toInt)
      .filter(!_.contains("NaN"))
      .map(_.split(" "))
      .filter(f => f(1) != "0")
      .map(f => f.map(f => f.toDouble))

    substream.map(f => Array(f(1).toDouble, f(2).toDouble, f(4).toDouble, f(5).toDouble, f(6).toDouble))
      .filter(f => f(0) == 4.0 || f(0) == 5.0)
      .map(f => LabeledPoint(f(0), Vectors.dense(f.slice(1, 5))))
      .foreachRDD(rdd => {
        Statistics.chiSqTest(rdd).zipWithIndex.foreach(v => println("%s, column no. %d".format(v._1, v._2)))
      })

    ssc.start()
    ssc.awaitTermination()
  }

} 
开发者ID:ZubairNabi,项目名称:prosparkstreaming,代码行数:45,代码来源:L9-5ChiSq.scala


示例4: CorrelationApp

//设置package包名称以及导入依赖的类
package org.apress.prospark

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.stat.Statistics
import org.apache.spark.streaming.Seconds
import org.apache.spark.streaming.StreamingContext

object CorrelationApp {

  def main(args: Array[String]) {
    if (args.length != 4) {
      System.err.println(
        "Usage: CorrelationApp <appname> <batchInterval> <hostname> <port>")
      System.exit(1)
    }
    val Seq(appName, batchInterval, hostname, port) = args.toSeq

    val conf = new SparkConf()
      .setAppName(appName)
      .setJars(SparkContext.jarOfClass(this.getClass).toSeq)

    val ssc = new StreamingContext(conf, Seconds(batchInterval.toInt))

    val substream = ssc.socketTextStream(hostname, port.toInt)
      .filter(!_.contains("NaN"))
      .map(_.split(" "))
      .filter(f => f(1) != "0")
      .map(f => f.map(f => f.toDouble))

    val datastream = substream.map(f => Array(f(1).toDouble, f(2).toDouble, f(4).toDouble, f(5).toDouble, f(6).toDouble))

    val walkingOrRunning = datastream.filter(f => f(0) == 4.0 || f(0) == 5.0).map(f => LabeledPoint(f(0), Vectors.dense(f.slice(1, 5))))
    walkingOrRunning.map(f => f.features).foreachRDD(rdd => {
      val corrSpearman = Statistics.corr(rdd, "spearman")
      val corrPearson = Statistics.corr(rdd, "pearson")
      println("Correlation Spearman: \n" + corrSpearman)
      println("Correlation Pearson: \n" + corrPearson)
    })

    ssc.start()
    ssc.awaitTermination()
  }

} 
开发者ID:ZubairNabi,项目名称:prosparkstreaming,代码行数:48,代码来源:L9-4Correlation.scala


示例5:

//设置package包名称以及导入依赖的类
//?
val result = hiveContext.sql("select max(login_times) from model_input_loyal_t")   //?
val max_login_times = result.collect()(0).get(0).asInstanceOf[Long].toDouble
val result = hiveContext.sql("select min(login_times) from model_input_loyal_t")   //??
val min_login_times = result.collect()(0).get(0).asInstanceOf[Long].toDouble
val region_login_times = max_login_times - min_login_times

val result = hiveContext.sql("select max(stay_time) from model_input_loyal_t")  //??
val max_stay_time = result.collect()(0).get(0).asInstanceOf[Float].toDouble
val result = hiveContext.sql("select min(stay_time) from model_input_loyal_t")  //???
val min_stay_time = result.collect()(0).get(0).asInstanceOf[Float].toDouble
val region_stay_time = max_stay_time - min_stay_time 

val result = hiveContext.sql("select max(view_days) from model_input_loyal_t")  //?
val max_view_days = result.collect()(0).get(0).asInstanceOf[Long].toDouble
val result = hiveContext.sql("select min(view_days) from model_input_loyal_t")  //??
val min_view_days = result.collect()(0).get(0).asInstanceOf[Long].toDouble
val region_view_days = max_view_days - min_view_days 


val result = hiveContext.sql("select max(pv) from model_input_loyal_t")  //?
val max_pv = result.collect()(0).get(0).asInstanceOf[Long].toDouble
val result = hiveContext.sql("select min(pv) from model_input_loyal_t")  //??
val min_pv = result.collect()(0).get(0).asInstanceOf[Long].toDouble
val region_pv = max_pv - min_pv 

val result =hiveContext.sql("select max(unix_timestamp(t2.last_viewtime,'yyyy-MM-dd')) from  model_input_loyal_t t2")
val max_last_viewtime = result.collect()(0).get(0).asInstanceOf[Long].toDouble         //?
val result = hiveContext.sql("select min(unix_timestamp(t2.last_viewtime,'yyyy-MM-dd')) from  model_input_loyal_t t2")
val min_last_viewtime = result.collect()(0).get(0).asInstanceOf[Long].toDouble     //??

val region_last_viewtime = max_last_viewtime - min_last_viewtime  


//??login_times:0.2,stay_time:0.3,view_days:0.3,pv:0.15,last_viewtime:0.05
val normalization= hiveContext.sql("select t1.cookie , (((t1.login_times - "+min_login_times+") * 0.2/"+region_login_times+") + ((t1.stay_time- "+min_stay_time+") * 0.3/"+region_stay_time+") +((t1.view_days - "+min_view_days+")* 0.3/"+region_view_days+") +((t1.pv - "+min_pv+")* 0.15/"+region_pv+") +((unix_timestamp(t1.last_viewtime,'yyyy-MM-dd')- "+min_last_viewtime+")*0.05 / " + region_last_viewtime + "))*100 as loyalty_score from model_input_loyal_t t1") 

normalization.registerTempTable("temporary_points")     //??

import org.apache.spark.mllib.stat.Statistics
import org.apache.spark.mllib.linalg.Vectors

val rdd =  normalization.rdd.map( s => Vectors.dense(s.get(1).asInstanceOf[Double].toDouble))
val summary = Statistics.colStats(rdd)
println(summary.mean)
val means = summary.mean(0)
println(summary.variance)
val standard_deviation = summary.variance(0)

//????????????½?0???
val r = means - standard_deviation*5
val low_bound =  if (r > 0)  r else 0
val up_bound = means + standard_deviation*5

val loyalty_temporary = hiveContext.sql("(select t1.lenovo_id,t1.loyalty_score,t1.loyalty_level from model_output_loyal_t t1 where 1=0) union all (select t2.cookie, t2.loyalty_score,(case when t2.loyalty_score  <= "+low_bound+"  then ''  when t2.loyalty_score < "+up_bound+" then '' else '' end)as loyalty_level   from temporary_points t2)")

loyalty_temporary.registerTempTable("temporary_loyalty")

hiveContext.sql("insert overwrite table data.model_output_loyal_t  partition (l_day='2016-10-01') select * from temporary_loyalty") 
开发者ID:Chihuataneo,项目名称:Spark_Personas,代码行数:60,代码来源:loyalty_model.scala


示例6: ChiSqLearning

//设置package包名称以及导入依赖的类
package org.apache.spark.examples.mllib
import org.apache.spark.mllib.linalg.{ Matrix, Matrices, Vectors }
import org.apache.spark.mllib.stat.Statistics
import org.apache.spark.{
  SparkConf,
  SparkContext

}

object ChiSqLearning {
  def main(args: Array[String]) {
    val vd = Vectors.dense(1, 2, 3, 4, 5)
    val vdResult = Statistics.chiSqTest(vd)
    println(vd)
    println(vdResult)
    println("-------------------------------")
    val mtx = Matrices.dense(3, 2, Array(1, 3, 5, 2, 4, 6))
    val mtxResult = Statistics.chiSqTest(mtx)
    println(mtx)
    println(mtxResult)
    
    //print :??????????????p?,???????p
    println("-------------------------------")
    val mtx2 = Matrices.dense(2, 2, Array(19.0, 34, 24, 10.0))
    printChiSqTest(mtx2)
    printChiSqTest(Matrices.dense(2, 2, Array(26.0, 36, 7, 2.0)))
    //    val mtxResult2 = Statistics.chiSqTest(mtx2)
    //    println(mtx2)
    //    println(mtxResult2)
  }

  def printChiSqTest(matrix: Matrix): Unit = {
    println("-------------------------------")
    val mtxResult2 = Statistics.chiSqTest(matrix)
    println(matrix)
    println(mtxResult2)
  }

} 
开发者ID:tophua,项目名称:spark1.52,代码行数:40,代码来源:ChiSqLearning.scala


示例7: RandomDistribution

//设置package包名称以及导入依赖的类
package net.akmorrow13.endive.featurizers

import breeze.linalg.DenseVector
import breeze.stats.distributions.{ExponentialFamily, DiscreteDistr, Poisson, Gaussian}
import org.apache.spark.mllib.stat.{MultivariateStatisticalSummary, Statistics}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.rdd.RDD

object RandomDistribution {

  def poisson(data: RDD[DenseVector[Double]]): Poisson = {
    val summary: MultivariateStatisticalSummary = Statistics.colStats(data.map(r => Vectors.dense(r.toArray)))
    val mean = summary.mean.toArray.sum
    new Poisson(mean)
  }

  def gaussian(data: RDD[DenseVector[Double]]): Gaussian = {
      val summary: MultivariateStatisticalSummary = Statistics.colStats(data.map(r => Vectors.dense(r.toArray)))
      val mean = summary.mean.toArray.sum
      val variance = summary.variance.toArray.sum
      println(s"mean: ${mean} variance ${variance}")
    new Gaussian(mean, variance)
  }
} 
开发者ID:akmorrow13,项目名称:endive,代码行数:25,代码来源:RandomDistribution.scala



注:本文中的org.apache.spark.mllib.stat.Statistics类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Scala DefaultMicroserviceGlobal类代码示例发布时间:2022-05-23
下一篇:
Scala Output类代码示例发布时间:2022-05-23
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap