• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Scala Job类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Scala中org.apache.hadoop.mapreduce.Job的典型用法代码示例。如果您正苦于以下问题:Scala Job类的具体用法?Scala Job怎么用?Scala Job使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了Job类的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Scala代码示例。

示例1: FrequencyMapReducer

//设置package包名称以及导入依赖的类
package com.argcv.cse8803.mapreducebasic

import com.argcv.valhalla.console.ColorForConsole._
import com.argcv.valhalla.utils.Awakable
import org.apache.hadoop.fs.Path
import org.apache.hadoop.io.{IntWritable, Text}
import org.apache.hadoop.mapreduce.Job
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat


object FrequencyMapReducer extends Awakable {

  def main(args: Array[String]): Unit = {
    // create a hadoop job and set main class
    val job = Job.getInstance()
    job.setJarByClass(FrequencyMapReducer.getClass)
    job.setJobName("Frequency")

    // set the input & output path
    FileInputFormat.addInputPath(job, new Path(args.head))
    FileOutputFormat.setOutputPath(job, new Path(s"${args(1)}-${System.currentTimeMillis()}"))

    // set mapper & reducer
    job.setMapperClass(FrequencyMapper.instance)
    job.setReducerClass(FrequencyReducer.instance)

    // specify the type of the output
    job.setOutputKeyClass(new Text().getClass)
    job.setOutputValueClass(new IntWritable().getClass)

    // run
    logger.info(s"job finished, status [${if (job.waitForCompletion(true)) "OK".withColor(GREEN) else "FAILED".withColor(RED)}]")
  }

} 
开发者ID:yuikns,项目名称:cse8803,代码行数:37,代码来源:FrequencyMapReducer.scala


示例2: TimelyImplicits

//设置package包名称以及导入依赖的类
package io.gzet.timeseries.timely

import io.gzet.utils.spark.accumulo.AccumuloConfig
import org.apache.accumulo.core.client.ClientConfiguration
import org.apache.accumulo.core.client.mapreduce.{AbstractInputFormat, InputFormatBase}
import org.apache.accumulo.core.client.security.tokens.PasswordToken
import org.apache.accumulo.core.data.Range
import org.apache.accumulo.core.security.Authorizations
import org.apache.hadoop.io.NullWritable
import org.apache.hadoop.mapreduce.Job
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD

import scala.collection.JavaConversions._

object TimelyImplicits {

  implicit class AccumuloReader(sc: SparkContext) {

    def timely(accumuloConfig: AccumuloConfig, rowPrefix: Option[String] = None): RDD[Metric] = {

      val conf = sc.hadoopConfiguration
      val job = Job.getInstance(conf)
      val clientConfig: ClientConfiguration = new ClientConfiguration()
        .withInstance(accumuloConfig.accumuloInstance)
        .withZkHosts(accumuloConfig.zookeeperHosts)

      val authorizations = new Authorizations(List("INTERNAL", "CONFIDENTIAL", "SECRET").map(_.getBytes()))

      AbstractInputFormat.setConnectorInfo(job, accumuloConfig.accumuloUser, new PasswordToken(accumuloConfig.accumuloPassword))
      AbstractInputFormat.setZooKeeperInstance(job, clientConfig)
      AbstractInputFormat.setScanAuthorizations(job, authorizations)
      InputFormatBase.setInputTableName(job, "timely.metrics")

      if(rowPrefix.isDefined) {
        val ranges = List(Range.prefix(rowPrefix.get))
        InputFormatBase.setRanges(job, ranges)
      }

      val rdd = sc.newAPIHadoopRDD(job.getConfiguration,
        classOf[AccumuloTimelyInputFormat],
        classOf[NullWritable],
        classOf[TimelyWritable]
      ) values

      rdd map {
        timely =>
          val Array(tagK, tagV) = timely.getMetricType.split("=", 2)
          Metric(
            timely.getMetric,
            timely.getTime,
            timely.getMetricValue,
            Map(tagK -> tagV)
          )
      }
    }
  }

} 
开发者ID:PacktPublishing,项目名称:Mastering-Spark-for-Data-Science,代码行数:60,代码来源:TimelyImplicits.scala


示例3: FrequencyMapReducer

//设置package包名称以及导入依赖的类
package com.argcv.iphigenia.example.hdfs.mr

import com.argcv.valhalla.console.ColorForConsole._
import com.argcv.valhalla.utils.Awakable
import org.apache.hadoop.fs.Path
import org.apache.hadoop.io.{ IntWritable, Text }
import org.apache.hadoop.mapreduce.Job
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat


object FrequencyMapReducer extends Awakable {

  def main(args: Array[String]): Unit = {
    // create a hadoop job and set main class
    val job = Job.getInstance()
    job.setJarByClass(FrequencyMapReducer.getClass)
    job.setJobName("Frequency")

    // set the input & output path
    FileInputFormat.addInputPath(job, new Path(args.head))
    FileOutputFormat.setOutputPath(job, new Path(s"${args(1)}-${System.currentTimeMillis()}"))

    // set mapper & reducer
    job.setMapperClass(FrequencyMapper.instance)
    job.setReducerClass(FrequencyReducer.instance)

    // specify the type of the output
    job.setOutputKeyClass(new Text().getClass)
    job.setOutputValueClass(new IntWritable().getClass)

    // run
    logger.info(s"job finished, status [${if (job.waitForCompletion(true)) "OK".withColor(GREEN) else "FAILED".withColor(RED)}]")
  }

} 
开发者ID:yuikns,项目名称:iphigenia,代码行数:37,代码来源:FrequencyMapReducer.scala


示例4: DefaultSource

//设置package包名称以及导入依赖的类
package pl.jborkowskijmartin.spark.mf

import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.FileStatus
import org.apache.hadoop.mapreduce.Job
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.execution.datasources.{FileFormat, OutputWriterFactory, PartitionedFile}
import org.apache.spark.sql.sources.Filter
import org.apache.spark.sql.types.{StringType, StructField, StructType}
import org.apache.spark.unsafe.types.UTF8String


class DefaultSource extends FileFormat {
  override def inferSchema(sparkSession: SparkSession, options: Map[String, String], files: Seq[FileStatus]):
  Option[StructType] = {
    println(">>>InferSchema")
    Some(StructType(
      StructField("line", StringType, nullable = true) :: Nil
    ))
  }

  override def prepareWrite(sparkSession: SparkSession, job: Job, options: Map[String, String], dataSchema: StructType):
  OutputWriterFactory = {
    println(">>> prepareWrite")
    null
  }

  override def buildReader(sparkSession: SparkSession, dataSchema: StructType, partitionSchema: StructType,
                           requiredSchema: StructType, filters: Seq[Filter], options: Map[String, String],
                           hadoopConf: Configuration): (PartitionedFile) => Iterator[InternalRow] = {
    pf => Iterator(InternalRow(UTF8String.fromString("hello")))
  }
} 
开发者ID:jborkowski,项目名称:plugin-for-jacek,代码行数:35,代码来源:DefaultSource.scala



注:本文中的org.apache.hadoop.mapreduce.Job类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Scala ServletContextHandler类代码示例发布时间:2022-05-23
下一篇:
Scala Future类代码示例发布时间:2022-05-23
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap