本文整理汇总了Scala中org.apache.spark.ml.feature.VectorAssembler类的典型用法代码示例。如果您正苦于以下问题:Scala VectorAssembler类的具体用法?Scala VectorAssembler怎么用?Scala VectorAssembler使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了VectorAssembler类的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Scala代码示例。
示例1: LRCV
//设置package包名称以及导入依赖的类
package com.ferhtaydn.rater
import org.apache.spark.SparkContext
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.feature.{ StringIndexerModel, VectorAssembler }
import org.apache.spark.ml.tuning.{ CrossValidator, CrossValidatorModel, ParamGridBuilder }
import org.apache.spark.mllib.linalg.Matrix
import org.apache.spark.sql.{ DataFrame, Row, SQLContext }
class LRCV(sc: SparkContext) {
implicit val sqlContext = new SQLContext(sc)
val lr = new LogisticRegression().setMaxIter(10).setFeaturesCol("scaledFeatures")
val paramGrid = new ParamGridBuilder()
.addGrid(lr.regParam, Array(0.1, 0.01))
.build()
val assembler = new VectorAssembler()
.setInputCols(Array("gender", "age", "weight", "height", "indexedJob"))
.setOutputCol("features")
val pipeline = new Pipeline()
.setStages(Array(assembler, standardScaler("features"), lr))
val cv = new CrossValidator()
.setEstimator(pipeline)
.setEvaluator(new BinaryClassificationEvaluator)
.setEstimatorParamMaps(paramGrid)
.setNumFolds(10)
def train(df: DataFrame): (StringIndexerModel, CrossValidatorModel, Matrix) = {
// need to index strings on all data to not missing the job fields.
// other alternative can be manually assign values for each job like gender.
val indexerModel = stringIndexer("job").fit(df)
val indexed = indexerModel.transform(df)
val splits = indexed.randomSplit(Array(0.8, 0.2))
val training = splits(0).cache()
val test = splits(1)
val cvModel = cv.fit(training)
val predictionAndLabels = cvModel
.transform(test)
.select("label", "prediction").map {
case Row(label: Double, prediction: Double) ?
(prediction, label)
}
printBinaryMetrics(predictionAndLabels)
(indexerModel, cvModel, confusionMatrix(predictionAndLabels))
}
}
开发者ID:ferhtaydn,项目名称:canceRater,代码行数:62,代码来源:LRCV.scala
示例2: LinearRegressionPipeline
//设置package包名称以及导入依赖的类
package org.sparksamples.regression.bikesharing
import org.apache.log4j.Logger
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.{VectorAssembler, VectorIndexer}
import org.apache.spark.ml.regression.LinearRegression
import org.apache.spark.mllib.evaluation.RegressionMetrics
import org.apache.spark.sql.{DataFrame, SparkSession}
object LinearRegressionPipeline {
@transient lazy val logger = Logger.getLogger(getClass.getName)
def linearRegressionWithVectorFormat(vectorAssembler: VectorAssembler, vectorIndexer: VectorIndexer, dataFrame: DataFrame) = {
val lr = new LinearRegression()
.setFeaturesCol("features")
.setLabelCol("label")
.setRegParam(0.1)
.setElasticNetParam(1.0)
.setMaxIter(10)
val pipeline = new Pipeline().setStages(Array(vectorAssembler, vectorIndexer, lr))
val Array(training, test) = dataFrame.randomSplit(Array(0.8, 0.2), seed = 12345)
val model = pipeline.fit(training)
val fullPredictions = model.transform(test).cache()
val predictions = fullPredictions.select("prediction").rdd.map(_.getDouble(0))
val labels = fullPredictions.select("label").rdd.map(_.getDouble(0))
val RMSE = new RegressionMetrics(predictions.zip(labels)).rootMeanSquaredError
println(s" Root mean squared error (RMSE): $RMSE")
}
def linearRegressionWithSVMFormat(spark: SparkSession) = {
// Load training data
val training = spark.read.format("libsvm")
.load("./src/main/scala/org/sparksamples/regression/dataset/BikeSharing/lsvmHours.txt")
val lr = new LinearRegression()
.setMaxIter(10)
.setRegParam(0.3)
.setElasticNetParam(0.8)
// Fit the model
val lrModel = lr.fit(training)
// Print the coefficients and intercept for linear regression
println(s"Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}")
// Summarize the model over the training set and print out some metrics
val trainingSummary = lrModel.summary
println(s"numIterations: ${trainingSummary.totalIterations}")
println(s"objectiveHistory: ${trainingSummary.objectiveHistory.toList}")
trainingSummary.residuals.show()
println(s"RMSE: ${trainingSummary.rootMeanSquaredError}")
println(s"r2: ${trainingSummary.r2}")
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:61,代码来源:LinearRegressionPipeline.scala
示例3: DecisionTreePipeline
//设置package包名称以及导入依赖的类
package org.stumbleuponclassifier
import org.apache.log4j.Logger
import org.apache.spark.ml.classification.DecisionTreeClassifier
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler}
import org.apache.spark.ml.{Pipeline, PipelineStage}
import org.apache.spark.sql.DataFrame
import scala.collection.mutable
object DecisionTreePipeline {
@transient lazy val logger = Logger.getLogger(getClass.getName)
def decisionTreePipeline(vectorAssembler: VectorAssembler, dataFrame: DataFrame) = {
val Array(training, test) = dataFrame.randomSplit(Array(0.9, 0.1), seed = 12345)
// Set up Pipeline
val stages = new mutable.ArrayBuffer[PipelineStage]()
val labelIndexer = new StringIndexer()
.setInputCol("label")
.setOutputCol("indexedLabel")
stages += labelIndexer
val dt = new DecisionTreeClassifier()
.setFeaturesCol(vectorAssembler.getOutputCol)
.setLabelCol("indexedLabel")
.setMaxDepth(5)
.setMaxBins(32)
.setMinInstancesPerNode(1)
.setMinInfoGain(0.0)
.setCacheNodeIds(false)
.setCheckpointInterval(10)
stages += vectorAssembler
stages += dt
val pipeline = new Pipeline().setStages(stages.toArray)
// Fit the Pipeline
val startTime = System.nanoTime()
//val model = pipeline.fit(training)
val model = pipeline.fit(dataFrame)
val elapsedTime = (System.nanoTime() - startTime) / 1e9
println(s"Training time: $elapsedTime seconds")
//val holdout = model.transform(test).select("prediction","label")
val holdout = model.transform(dataFrame).select("prediction","label")
// Select (prediction, true label) and compute test error
val evaluator = new MulticlassClassificationEvaluator()
.setLabelCol("label")
.setPredictionCol("prediction")
.setMetricName("accuracy")
val mAccuracy = evaluator.evaluate(holdout)
println("Test set accuracy = " + mAccuracy)
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:60,代码来源:DecisionTreePipeline.scala
示例4: NaiveBayesPipeline
//设置package包名称以及导入依赖的类
package org.stumbleuponclassifier
import org.apache.log4j.Logger
import org.apache.spark.ml.classification.NaiveBayes
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler}
import org.apache.spark.ml.{Pipeline, PipelineStage}
import org.apache.spark.sql.DataFrame
import scala.collection.mutable
object NaiveBayesPipeline {
@transient lazy val logger = Logger.getLogger(getClass.getName)
def naiveBayesPipeline(vectorAssembler: VectorAssembler, dataFrame: DataFrame) = {
val Array(training, test) = dataFrame.randomSplit(Array(0.9, 0.1), seed = 12345)
// Set up Pipeline
val stages = new mutable.ArrayBuffer[PipelineStage]()
val labelIndexer = new StringIndexer()
.setInputCol("label")
.setOutputCol("indexedLabel")
stages += labelIndexer
val nb = new NaiveBayes()
stages += vectorAssembler
stages += nb
val pipeline = new Pipeline().setStages(stages.toArray)
// Fit the Pipeline
val startTime = System.nanoTime()
//val model = pipeline.fit(training)
val model = pipeline.fit(dataFrame)
val elapsedTime = (System.nanoTime() - startTime) / 1e9
println(s"Training time: $elapsedTime seconds")
//val holdout = model.transform(test).select("prediction","label")
val holdout = model.transform(dataFrame).select("prediction","label")
// Select (prediction, true label) and compute test error
val evaluator = new MulticlassClassificationEvaluator()
.setLabelCol("label")
.setPredictionCol("prediction")
.setMetricName("accuracy")
val mAccuracy = evaluator.evaluate(holdout)
println("Test set accuracy = " + mAccuracy)
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:52,代码来源:NaiveBayesPipeline.scala
示例5: RandomForestPipeline
//设置package包名称以及导入依赖的类
package org.stumbleuponclassifier
import org.apache.log4j.Logger
import org.apache.spark.ml.classification.RandomForestClassifier
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler}
import org.apache.spark.ml.{Pipeline, PipelineStage}
import org.apache.spark.sql.DataFrame
import scala.collection.mutable
object RandomForestPipeline {
@transient lazy val logger = Logger.getLogger(getClass.getName)
def randomForestPipeline(vectorAssembler: VectorAssembler, dataFrame: DataFrame) = {
val Array(training, test) = dataFrame.randomSplit(Array(0.9, 0.1), seed = 12345)
// Set up Pipeline
val stages = new mutable.ArrayBuffer[PipelineStage]()
val labelIndexer = new StringIndexer()
.setInputCol("label")
.setOutputCol("indexedLabel")
stages += labelIndexer
val rf = new RandomForestClassifier()
.setFeaturesCol(vectorAssembler.getOutputCol)
.setLabelCol("indexedLabel")
.setNumTrees(20)
.setMaxDepth(5)
.setMaxBins(32)
.setMinInstancesPerNode(1)
.setMinInfoGain(0.0)
.setCacheNodeIds(false)
.setCheckpointInterval(10)
stages += vectorAssembler
stages += rf
val pipeline = new Pipeline().setStages(stages.toArray)
// Fit the Pipeline
val startTime = System.nanoTime()
//val model = pipeline.fit(training)
val model = pipeline.fit(dataFrame)
val elapsedTime = (System.nanoTime() - startTime) / 1e9
println(s"Training time: $elapsedTime seconds")
//val holdout = model.transform(test).select("prediction","label")
val holdout = model.transform(dataFrame).select("prediction","label")
// Select (prediction, true label) and compute test error
val evaluator = new MulticlassClassificationEvaluator()
.setLabelCol("label")
.setPredictionCol("prediction")
.setMetricName("accuracy")
val mAccuracy = evaluator.evaluate(holdout)
println("Test set accuracy = " + mAccuracy)
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:62,代码来源:RandomForestPipeline.scala
示例6: DecisionTreePipeline
//设置package包名称以及导入依赖的类
package org.sparksamples.classification.stumbleupon
import org.apache.log4j.Logger
import org.apache.spark.ml.classification.DecisionTreeClassifier
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler}
import org.apache.spark.ml.{Pipeline, PipelineStage}
import org.apache.spark.sql.DataFrame
import scala.collection.mutable
object DecisionTreePipeline {
@transient lazy val logger = Logger.getLogger(getClass.getName)
def decisionTreePipeline(vectorAssembler: VectorAssembler, dataFrame: DataFrame) = {
val Array(training, test) = dataFrame.randomSplit(Array(0.9, 0.1), seed = 12345)
// Set up Pipeline
val stages = new mutable.ArrayBuffer[PipelineStage]()
val labelIndexer = new StringIndexer()
.setInputCol("label")
.setOutputCol("indexedLabel")
stages += labelIndexer
val dt = new DecisionTreeClassifier()
.setFeaturesCol(vectorAssembler.getOutputCol)
.setLabelCol("indexedLabel")
.setMaxDepth(5)
.setMaxBins(32)
.setMinInstancesPerNode(1)
.setMinInfoGain(0.0)
.setCacheNodeIds(false)
.setCheckpointInterval(10)
stages += vectorAssembler
stages += dt
val pipeline = new Pipeline().setStages(stages.toArray)
// Fit the Pipeline
val startTime = System.nanoTime()
//val model = pipeline.fit(training)
val model = pipeline.fit(dataFrame)
val elapsedTime = (System.nanoTime() - startTime) / 1e9
println(s"Training time: $elapsedTime seconds")
//val holdout = model.transform(test).select("prediction","label")
val holdout = model.transform(dataFrame).select("prediction","label")
// Select (prediction, true label) and compute test error
val evaluator = new MulticlassClassificationEvaluator()
.setLabelCol("label")
.setPredictionCol("prediction")
.setMetricName("accuracy")
val mAccuracy = evaluator.evaluate(holdout)
println("Test set accuracy = " + mAccuracy)
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:60,代码来源:DecisionTreePipeline.scala
示例7: NaiveBayesPipeline
//设置package包名称以及导入依赖的类
package org.sparksamples.classification.stumbleupon
import org.apache.log4j.Logger
import org.apache.spark.ml.classification.NaiveBayes
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler}
import org.apache.spark.ml.{Pipeline, PipelineStage}
import org.apache.spark.sql.DataFrame
import scala.collection.mutable
object NaiveBayesPipeline {
@transient lazy val logger = Logger.getLogger(getClass.getName)
def naiveBayesPipeline(vectorAssembler: VectorAssembler, dataFrame: DataFrame) = {
val Array(training, test) = dataFrame.randomSplit(Array(0.9, 0.1), seed = 12345)
// Set up Pipeline
val stages = new mutable.ArrayBuffer[PipelineStage]()
val labelIndexer = new StringIndexer()
.setInputCol("label")
.setOutputCol("indexedLabel")
stages += labelIndexer
val nb = new NaiveBayes()
stages += vectorAssembler
stages += nb
val pipeline = new Pipeline().setStages(stages.toArray)
// Fit the Pipeline
val startTime = System.nanoTime()
//val model = pipeline.fit(training)
val model = pipeline.fit(dataFrame)
val elapsedTime = (System.nanoTime() - startTime) / 1e9
println(s"Training time: $elapsedTime seconds")
//val holdout = model.transform(test).select("prediction","label")
val holdout = model.transform(dataFrame).select("prediction","label")
// Select (prediction, true label) and compute test error
val evaluator = new MulticlassClassificationEvaluator()
.setLabelCol("label")
.setPredictionCol("prediction")
.setMetricName("accuracy")
val mAccuracy = evaluator.evaluate(holdout)
println("Test set accuracy = " + mAccuracy)
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:52,代码来源:NaiveBayesPipeline.scala
示例8: RandomForestPipeline
//设置package包名称以及导入依赖的类
package org.sparksamples.classification.stumbleupon
import org.apache.log4j.Logger
import org.apache.spark.ml.classification.RandomForestClassifier
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler}
import org.apache.spark.ml.{Pipeline, PipelineStage}
import org.apache.spark.sql.DataFrame
import scala.collection.mutable
object RandomForestPipeline {
@transient lazy val logger = Logger.getLogger(getClass.getName)
def randomForestPipeline(vectorAssembler: VectorAssembler, dataFrame: DataFrame) = {
val Array(training, test) = dataFrame.randomSplit(Array(0.9, 0.1), seed = 12345)
// Set up Pipeline
val stages = new mutable.ArrayBuffer[PipelineStage]()
val labelIndexer = new StringIndexer()
.setInputCol("label")
.setOutputCol("indexedLabel")
stages += labelIndexer
val rf = new RandomForestClassifier()
.setFeaturesCol(vectorAssembler.getOutputCol)
.setLabelCol("indexedLabel")
.setNumTrees(20)
.setMaxDepth(5)
.setMaxBins(32)
.setMinInstancesPerNode(1)
.setMinInfoGain(0.0)
.setCacheNodeIds(false)
.setCheckpointInterval(10)
stages += vectorAssembler
stages += rf
val pipeline = new Pipeline().setStages(stages.toArray)
// Fit the Pipeline
val startTime = System.nanoTime()
//val model = pipeline.fit(training)
val model = pipeline.fit(dataFrame)
val elapsedTime = (System.nanoTime() - startTime) / 1e9
println(s"Training time: $elapsedTime seconds")
//val holdout = model.transform(test).select("prediction","label")
val holdout = model.transform(dataFrame).select("prediction","label")
// Select (prediction, true label) and compute test error
val evaluator = new MulticlassClassificationEvaluator()
.setLabelCol("label")
.setPredictionCol("prediction")
.setMetricName("accuracy")
val mAccuracy = evaluator.evaluate(holdout)
println("Test set accuracy = " + mAccuracy)
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:62,代码来源:RandomForestPipeline.scala
示例9: Pca
//设置package包名称以及导入依赖的类
package com.github.dongjinleekr.spark.example
import com.github.dongjinleekr.spark.dataset.Iris
import com.github.dongjinleekr.spark.dataset.Iris._
import org.apache.spark.ml.feature.{PCA, VectorAssembler}
import org.apache.spark.sql.functions._
import org.apache.spark.sql.SparkSession
object Pca {
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder()
.appName("PCA Example")
.getOrCreate()
// Read the file
val raw = spark.read
.schema(Iris.schema)
.option("header", true)
.csv("hdfs:///datasets/iris/data.csv")
// Normalize:
// 1. Combine the features into vector.
// 2. Convert enumerating value into Int type.
val assembler = new VectorAssembler()
.setInputCols(Iris.schema.fields.map(_.name).slice(1, 5))
.setOutputCol("features")
def speciesToInt: (String => Int) = { s: String => Species.toInt(s) }
val newSpecies = udf(speciesToInt).apply(col("species"))
val df = assembler.transform(raw)
.withColumn("species", newSpecies)
.select("id", "features", "species")
// PCA (2)
val pca = new PCA()
.setInputCol("features")
.setOutputCol("pcaFeatures")
.setK(2)
.fit(df)
val result = pca.transform(df).select("pcaFeatures")
result.show(false)
}
}
开发者ID:dongjinleekr,项目名称:spark-dataset,代码行数:48,代码来源:Pca.scala
示例10: BaseTransformerConverter
//设置package包名称以及导入依赖的类
package org.apache.spark.ml.mleap.converter.runtime
import com.truecar.mleap.runtime.transformer
import org.apache.spark.ml.PipelineModel
import org.apache.spark.ml.classification.RandomForestClassificationModel
import org.apache.spark.ml.feature.{IndexToString, StandardScalerModel, StringIndexerModel, VectorAssembler}
import org.apache.spark.ml.mleap.classification.SVMModel
import org.apache.spark.ml.mleap.converter.runtime.classification.{RandomForestClassificationModelToMleap, SupportVectorMachineModelToMleap}
import org.apache.spark.ml.mleap.converter.runtime.feature.{IndexToStringToMleap, StandardScalerModelToMleap, StringIndexerModelToMleap, VectorAssemblerModelToMleap}
import org.apache.spark.ml.mleap.converter.runtime.regression.{LinearRegressionModelToMleap, RandomForestRegressionModelToMleap}
import org.apache.spark.ml.regression.{LinearRegressionModel, RandomForestRegressionModel}
trait BaseTransformerConverter extends SparkTransformerConverter {
// regression
implicit val mleapLinearRegressionModelToMleap: TransformerToMleap[LinearRegressionModel, transformer.LinearRegressionModel] =
addConverter(LinearRegressionModelToMleap)
implicit val mleapRandomForestRegressionModelToMleap: TransformerToMleap[RandomForestRegressionModel, transformer.RandomForestRegressionModel] =
addConverter(RandomForestRegressionModelToMleap)
// classification
implicit val mleapRandomForestClassificationModelToMleap: TransformerToMleap[RandomForestClassificationModel, transformer.RandomForestClassificationModel] =
addConverter(RandomForestClassificationModelToMleap)
implicit val mleapSupportVectorMachineModelToMleap: TransformerToMleap[SVMModel, transformer.SupportVectorMachineModel] =
addConverter(SupportVectorMachineModelToMleap)
//feature
implicit val mleapIndexToStringToMleap: TransformerToMleap[IndexToString, transformer.ReverseStringIndexerModel] =
addConverter(IndexToStringToMleap)
implicit val mleapStandardScalerModelToMleap: TransformerToMleap[StandardScalerModel, transformer.StandardScalerModel] =
addConverter(StandardScalerModelToMleap)
implicit val mleapStringIndexerModelToMleap: TransformerToMleap[StringIndexerModel, transformer.StringIndexerModel] =
addConverter(StringIndexerModelToMleap)
implicit val mleapVectorAssemblerToMleap: TransformerToMleap[VectorAssembler, transformer.VectorAssemblerModel] =
addConverter(VectorAssemblerModelToMleap)
// other
implicit val mleapPipelineModelToMleap: TransformerToMleap[PipelineModel, transformer.PipelineModel] =
addConverter(PipelineModelToMleap(this))
}
object BaseTransformerConverter extends BaseTransformerConverter
开发者ID:TrueCar,项目名称:mleap,代码行数:42,代码来源:BaseTransformerConverter.scala
示例11: Test
//设置package包名称以及导入依赖的类
package org.apache.spark.test
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.ml.feature.StringIndexer
object Test {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("Simple Application")
val sc = new SparkContext(conf)
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
//KMEANS
val npart = 216
def time[A](a: => A) = {
val now = System.nanoTime
val result = a
val sec = (System.nanoTime - now) * 1e-9
println("Total time (secs): " + sec)
result
}
val file = "hdfs://hadoop-master:8020/user/spark/datasets/higgs/HIGGS.csv"
val df = sqlContext.read.format("com.databricks.spark.csv").option("header", "false")
.option("inferSchema", "true").load(file).repartition(npart)
import org.apache.spark.ml.feature.VectorAssembler
val featureAssembler = new VectorAssembler().setInputCols(df.columns.drop(1)).setOutputCol("features")
val processedDf = featureAssembler.transform(df).cache()
print("Num. elements: " + processedDf.count)
// Trains a k-means model.
import org.apache.spark.ml.clustering.KMeans
val kmeans = new KMeans().setSeed(1L)
val cmodel = time(kmeans.fit(processedDf.select("features")))
//RANDOM FOREST
import org.apache.spark.ml.classification.RandomForestClassifier
val labelCol = df.columns.head
val indexer = new StringIndexer().setInputCol(labelCol).setOutputCol("labelIndexed")
val imodel = indexer.fit(processedDf)
val indexedDF = imodel.transform(processedDf)
val rf = new RandomForestClassifier().setFeaturesCol("features").setLabelCol("labelIndexed")
val model = time(rf.fit(indexedDF))
}
}
开发者ID:sramirez,项目名称:scalabilityTestSpark,代码行数:54,代码来源:Test.scala
注:本文中的org.apache.spark.ml.feature.VectorAssembler类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论