本文整理汇总了Scala中org.apache.spark.ml.feature.StringIndexer类的典型用法代码示例。如果您正苦于以下问题:Scala StringIndexer类的具体用法?Scala StringIndexer怎么用?Scala StringIndexer使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了StringIndexer类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Scala代码示例。
示例1: preprocess
//设置package包名称以及导入依赖的类
package functions
import config.paramconf.PreprocessParams
import functions.clean.Cleaner
import functions.segment.Segmenter
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.{CountVectorizer, IDF, StopWordsRemover, StringIndexer}
import org.apache.spark.sql.DataFrame
def preprocess(data: DataFrame): Pipeline = {
val spark = data.sparkSession
val params = new PreprocessParams
val indexModel = new StringIndexer()
.setHandleInvalid(params.handleInvalid)
.setInputCol("label")
.setOutputCol("indexedLabel")
.fit(data)
val cleaner = new Cleaner()
.setFanJian(params.fanjian)
.setQuanBan(params.quanban)
.setMinLineLen(params.minLineLen)
.setInputCol("content")
.setOutputCol("cleand")
val segmenter = new Segmenter()
.isAddNature(params.addNature)
.isDelEn(params.delEn)
.isDelNum(params.delNum)
.isNatureFilter(params.natureFilter)
.setMinTermLen(params.minTermLen)
.setMinTermNum(params.minTermNum)
.setSegType(params.segmentType)
.setInputCol(cleaner.getOutputCol)
.setOutputCol("segmented")
val stopwords = spark.sparkContext.textFile(params.stopwordFilePath).collect()
val remover = new StopWordsRemover()
.setStopWords(stopwords)
.setInputCol(segmenter.getOutputCol)
.setOutputCol("removed")
val vectorizer = new CountVectorizer()
.setMinTF(params.minTF)
.setVocabSize(params.vocabSize)
.setInputCol(remover.getOutputCol)
.setOutputCol("vectorized")
val idf = new IDF()
.setMinDocFreq(params.minDocFreq)
.setInputCol(vectorizer.getOutputCol)
.setOutputCol("features")
val stages = Array(cleaner, indexModel, segmenter, remover, vectorizer, idf)
new Pipeline().setStages(stages)
}
}
开发者ID:yhao2014,项目名称:CkoocNLP,代码行数:60,代码来源:Preprocessor.scala
示例2: OneHotEncoderExample
//设置package包名称以及导入依赖的类
package org.sparksamples.regression.bikesharing
import org.apache.spark.sql.SparkSession
object OneHotEncoderExample {
def main(args: Array[String]): Unit = {
import org.apache.spark.ml.feature.{OneHotEncoder, StringIndexer}
val spark = SparkSession
.builder()
.appName("Spark SQL basic example").master("local[1]")
.config("spark.some.config.option", "some-value")
.getOrCreate()
// For implicit conversions like converting RDDs to DataFrames
val df = spark.createDataFrame(Seq(
(0, 3),
(1, 2),
(2, 4),
(3, 3),
(4, 3),
(5, 4)
)).toDF("id", "category")
val indexer = new StringIndexer()
.setInputCol("category")
.setOutputCol("categoryIndex")
.fit(df)
val indexed = indexer.transform(df)
val encoder = new OneHotEncoder()
.setInputCol("categoryIndex")
.setOutputCol("categoryVec")
val encoded = encoder.transform(indexed)
encoded.select("id", "categoryVec").show()
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:41,代码来源:OneHotEncoderExample.scala
示例3: DecisionTreePipeline
//设置package包名称以及导入依赖的类
package org.stumbleuponclassifier
import org.apache.log4j.Logger
import org.apache.spark.ml.classification.DecisionTreeClassifier
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler}
import org.apache.spark.ml.{Pipeline, PipelineStage}
import org.apache.spark.sql.DataFrame
import scala.collection.mutable
object DecisionTreePipeline {
@transient lazy val logger = Logger.getLogger(getClass.getName)
def decisionTreePipeline(vectorAssembler: VectorAssembler, dataFrame: DataFrame) = {
val Array(training, test) = dataFrame.randomSplit(Array(0.9, 0.1), seed = 12345)
// Set up Pipeline
val stages = new mutable.ArrayBuffer[PipelineStage]()
val labelIndexer = new StringIndexer()
.setInputCol("label")
.setOutputCol("indexedLabel")
stages += labelIndexer
val dt = new DecisionTreeClassifier()
.setFeaturesCol(vectorAssembler.getOutputCol)
.setLabelCol("indexedLabel")
.setMaxDepth(5)
.setMaxBins(32)
.setMinInstancesPerNode(1)
.setMinInfoGain(0.0)
.setCacheNodeIds(false)
.setCheckpointInterval(10)
stages += vectorAssembler
stages += dt
val pipeline = new Pipeline().setStages(stages.toArray)
// Fit the Pipeline
val startTime = System.nanoTime()
//val model = pipeline.fit(training)
val model = pipeline.fit(dataFrame)
val elapsedTime = (System.nanoTime() - startTime) / 1e9
println(s"Training time: $elapsedTime seconds")
//val holdout = model.transform(test).select("prediction","label")
val holdout = model.transform(dataFrame).select("prediction","label")
// Select (prediction, true label) and compute test error
val evaluator = new MulticlassClassificationEvaluator()
.setLabelCol("label")
.setPredictionCol("prediction")
.setMetricName("accuracy")
val mAccuracy = evaluator.evaluate(holdout)
println("Test set accuracy = " + mAccuracy)
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:60,代码来源:DecisionTreePipeline.scala
示例4: NaiveBayesPipeline
//设置package包名称以及导入依赖的类
package org.stumbleuponclassifier
import org.apache.log4j.Logger
import org.apache.spark.ml.classification.NaiveBayes
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler}
import org.apache.spark.ml.{Pipeline, PipelineStage}
import org.apache.spark.sql.DataFrame
import scala.collection.mutable
object NaiveBayesPipeline {
@transient lazy val logger = Logger.getLogger(getClass.getName)
def naiveBayesPipeline(vectorAssembler: VectorAssembler, dataFrame: DataFrame) = {
val Array(training, test) = dataFrame.randomSplit(Array(0.9, 0.1), seed = 12345)
// Set up Pipeline
val stages = new mutable.ArrayBuffer[PipelineStage]()
val labelIndexer = new StringIndexer()
.setInputCol("label")
.setOutputCol("indexedLabel")
stages += labelIndexer
val nb = new NaiveBayes()
stages += vectorAssembler
stages += nb
val pipeline = new Pipeline().setStages(stages.toArray)
// Fit the Pipeline
val startTime = System.nanoTime()
//val model = pipeline.fit(training)
val model = pipeline.fit(dataFrame)
val elapsedTime = (System.nanoTime() - startTime) / 1e9
println(s"Training time: $elapsedTime seconds")
//val holdout = model.transform(test).select("prediction","label")
val holdout = model.transform(dataFrame).select("prediction","label")
// Select (prediction, true label) and compute test error
val evaluator = new MulticlassClassificationEvaluator()
.setLabelCol("label")
.setPredictionCol("prediction")
.setMetricName("accuracy")
val mAccuracy = evaluator.evaluate(holdout)
println("Test set accuracy = " + mAccuracy)
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:52,代码来源:NaiveBayesPipeline.scala
示例5: RandomForestPipeline
//设置package包名称以及导入依赖的类
package org.stumbleuponclassifier
import org.apache.log4j.Logger
import org.apache.spark.ml.classification.RandomForestClassifier
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler}
import org.apache.spark.ml.{Pipeline, PipelineStage}
import org.apache.spark.sql.DataFrame
import scala.collection.mutable
object RandomForestPipeline {
@transient lazy val logger = Logger.getLogger(getClass.getName)
def randomForestPipeline(vectorAssembler: VectorAssembler, dataFrame: DataFrame) = {
val Array(training, test) = dataFrame.randomSplit(Array(0.9, 0.1), seed = 12345)
// Set up Pipeline
val stages = new mutable.ArrayBuffer[PipelineStage]()
val labelIndexer = new StringIndexer()
.setInputCol("label")
.setOutputCol("indexedLabel")
stages += labelIndexer
val rf = new RandomForestClassifier()
.setFeaturesCol(vectorAssembler.getOutputCol)
.setLabelCol("indexedLabel")
.setNumTrees(20)
.setMaxDepth(5)
.setMaxBins(32)
.setMinInstancesPerNode(1)
.setMinInfoGain(0.0)
.setCacheNodeIds(false)
.setCheckpointInterval(10)
stages += vectorAssembler
stages += rf
val pipeline = new Pipeline().setStages(stages.toArray)
// Fit the Pipeline
val startTime = System.nanoTime()
//val model = pipeline.fit(training)
val model = pipeline.fit(dataFrame)
val elapsedTime = (System.nanoTime() - startTime) / 1e9
println(s"Training time: $elapsedTime seconds")
//val holdout = model.transform(test).select("prediction","label")
val holdout = model.transform(dataFrame).select("prediction","label")
// Select (prediction, true label) and compute test error
val evaluator = new MulticlassClassificationEvaluator()
.setLabelCol("label")
.setPredictionCol("prediction")
.setMetricName("accuracy")
val mAccuracy = evaluator.evaluate(holdout)
println("Test set accuracy = " + mAccuracy)
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:62,代码来源:RandomForestPipeline.scala
示例6: DecisionTreePipeline
//设置package包名称以及导入依赖的类
package org.sparksamples.classification.stumbleupon
import org.apache.log4j.Logger
import org.apache.spark.ml.classification.DecisionTreeClassifier
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler}
import org.apache.spark.ml.{Pipeline, PipelineStage}
import org.apache.spark.sql.DataFrame
import scala.collection.mutable
object DecisionTreePipeline {
@transient lazy val logger = Logger.getLogger(getClass.getName)
def decisionTreePipeline(vectorAssembler: VectorAssembler, dataFrame: DataFrame) = {
val Array(training, test) = dataFrame.randomSplit(Array(0.9, 0.1), seed = 12345)
// Set up Pipeline
val stages = new mutable.ArrayBuffer[PipelineStage]()
val labelIndexer = new StringIndexer()
.setInputCol("label")
.setOutputCol("indexedLabel")
stages += labelIndexer
val dt = new DecisionTreeClassifier()
.setFeaturesCol(vectorAssembler.getOutputCol)
.setLabelCol("indexedLabel")
.setMaxDepth(5)
.setMaxBins(32)
.setMinInstancesPerNode(1)
.setMinInfoGain(0.0)
.setCacheNodeIds(false)
.setCheckpointInterval(10)
stages += vectorAssembler
stages += dt
val pipeline = new Pipeline().setStages(stages.toArray)
// Fit the Pipeline
val startTime = System.nanoTime()
//val model = pipeline.fit(training)
val model = pipeline.fit(dataFrame)
val elapsedTime = (System.nanoTime() - startTime) / 1e9
println(s"Training time: $elapsedTime seconds")
//val holdout = model.transform(test).select("prediction","label")
val holdout = model.transform(dataFrame).select("prediction","label")
// Select (prediction, true label) and compute test error
val evaluator = new MulticlassClassificationEvaluator()
.setLabelCol("label")
.setPredictionCol("prediction")
.setMetricName("accuracy")
val mAccuracy = evaluator.evaluate(holdout)
println("Test set accuracy = " + mAccuracy)
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:60,代码来源:DecisionTreePipeline.scala
示例7: NaiveBayesPipeline
//设置package包名称以及导入依赖的类
package org.sparksamples.classification.stumbleupon
import org.apache.log4j.Logger
import org.apache.spark.ml.classification.NaiveBayes
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler}
import org.apache.spark.ml.{Pipeline, PipelineStage}
import org.apache.spark.sql.DataFrame
import scala.collection.mutable
object NaiveBayesPipeline {
@transient lazy val logger = Logger.getLogger(getClass.getName)
def naiveBayesPipeline(vectorAssembler: VectorAssembler, dataFrame: DataFrame) = {
val Array(training, test) = dataFrame.randomSplit(Array(0.9, 0.1), seed = 12345)
// Set up Pipeline
val stages = new mutable.ArrayBuffer[PipelineStage]()
val labelIndexer = new StringIndexer()
.setInputCol("label")
.setOutputCol("indexedLabel")
stages += labelIndexer
val nb = new NaiveBayes()
stages += vectorAssembler
stages += nb
val pipeline = new Pipeline().setStages(stages.toArray)
// Fit the Pipeline
val startTime = System.nanoTime()
//val model = pipeline.fit(training)
val model = pipeline.fit(dataFrame)
val elapsedTime = (System.nanoTime() - startTime) / 1e9
println(s"Training time: $elapsedTime seconds")
//val holdout = model.transform(test).select("prediction","label")
val holdout = model.transform(dataFrame).select("prediction","label")
// Select (prediction, true label) and compute test error
val evaluator = new MulticlassClassificationEvaluator()
.setLabelCol("label")
.setPredictionCol("prediction")
.setMetricName("accuracy")
val mAccuracy = evaluator.evaluate(holdout)
println("Test set accuracy = " + mAccuracy)
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:52,代码来源:NaiveBayesPipeline.scala
示例8: RandomForestPipeline
//设置package包名称以及导入依赖的类
package org.sparksamples.classification.stumbleupon
import org.apache.log4j.Logger
import org.apache.spark.ml.classification.RandomForestClassifier
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler}
import org.apache.spark.ml.{Pipeline, PipelineStage}
import org.apache.spark.sql.DataFrame
import scala.collection.mutable
object RandomForestPipeline {
@transient lazy val logger = Logger.getLogger(getClass.getName)
def randomForestPipeline(vectorAssembler: VectorAssembler, dataFrame: DataFrame) = {
val Array(training, test) = dataFrame.randomSplit(Array(0.9, 0.1), seed = 12345)
// Set up Pipeline
val stages = new mutable.ArrayBuffer[PipelineStage]()
val labelIndexer = new StringIndexer()
.setInputCol("label")
.setOutputCol("indexedLabel")
stages += labelIndexer
val rf = new RandomForestClassifier()
.setFeaturesCol(vectorAssembler.getOutputCol)
.setLabelCol("indexedLabel")
.setNumTrees(20)
.setMaxDepth(5)
.setMaxBins(32)
.setMinInstancesPerNode(1)
.setMinInfoGain(0.0)
.setCacheNodeIds(false)
.setCheckpointInterval(10)
stages += vectorAssembler
stages += rf
val pipeline = new Pipeline().setStages(stages.toArray)
// Fit the Pipeline
val startTime = System.nanoTime()
//val model = pipeline.fit(training)
val model = pipeline.fit(dataFrame)
val elapsedTime = (System.nanoTime() - startTime) / 1e9
println(s"Training time: $elapsedTime seconds")
//val holdout = model.transform(test).select("prediction","label")
val holdout = model.transform(dataFrame).select("prediction","label")
// Select (prediction, true label) and compute test error
val evaluator = new MulticlassClassificationEvaluator()
.setLabelCol("label")
.setPredictionCol("prediction")
.setMetricName("accuracy")
val mAccuracy = evaluator.evaluate(holdout)
println("Test set accuracy = " + mAccuracy)
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:62,代码来源:RandomForestPipeline.scala
示例9: StringIndexerJob
//设置package包名称以及导入依赖的类
import io.hydrosphere.mist.api._
import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.StringIndexer
import org.apache.spark.sql.SparkSession
object StringIndexerJob extends MLMistJob{
def session: SparkSession = SparkSession
.builder()
.appName(context.appName)
.config(context.getConf)
.getOrCreate()
def train(savePath: String): Map[String, Any] = {
val df = session.createDataFrame(
Seq((0, "a"), (1, "b"), (2, "c"), (3, "a"), (4, "a"), (5, "c"))
).toDF("id", "category")
val indexer = new StringIndexer()
.setInputCol("category")
.setOutputCol("categoryIndex")
val pipeline = new Pipeline().setStages(Array(indexer))
val model = pipeline.fit(df)
model.write.overwrite().save(savePath)
Map.empty[String, Any]
}
def serve(modelPath: String, features: List[String]): Map[String, Any] = {
import LocalPipelineModel._
val pipeline = PipelineLoader.load(modelPath)
val data = LocalData(
LocalDataColumn("category", features)
)
val result: LocalData = pipeline.transform(data)
Map("result" -> result.select("category", "categoryIndex").toMapList)
}
}
开发者ID:Hydrospheredata,项目名称:mist,代码行数:44,代码来源:StringIndexerJob.scala
示例10: IndexToStringJob
//设置package包名称以及导入依赖的类
import io.hydrosphere.mist.api._
import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.{IndexToString, StringIndexer}
import org.apache.spark.sql.SparkSession
object IndexToStringJob extends MLMistJob {
def session: SparkSession = SparkSession
.builder()
.appName(context.appName)
.config(context.getConf)
.getOrCreate()
def train(savePath: String): Map[String, Any] = {
val df = session.createDataFrame(Seq(
(0, "a"),
(1, "b"),
(2, "c"),
(3, "a"),
(4, "a"),
(5, "c")
)).toDF("id", "category")
val indexer = new StringIndexer()
.setInputCol("category")
.setOutputCol("categoryIndex")
.fit(df)
val converter = new IndexToString()
.setInputCol("categoryIndex")
.setOutputCol("originalCategory")
val pipeline = new Pipeline().setStages(Array(indexer, converter))
val model = pipeline.fit(df)
model.write.overwrite().save("models/index")
Map.empty[String, Any]
}
def serve(modelPath: String, features: List[Double]): Map[String, Any] = {
import LocalPipelineModel._
val features = List(
"a", "b", "c", "c"
)
val pipeline = PipelineLoader.load(modelPath)
val data = LocalData(
LocalDataColumn("category", features)
)
val result: LocalData = pipeline.transform(data)
Map("result" -> result.select("category", "categoryIndex").toMapList)
}
}
开发者ID:Hydrospheredata,项目名称:mist,代码行数:57,代码来源:IndexToStringJob.scala
示例11: DTreeClassificationJob
//设置package包名称以及导入依赖的类
import io.hydrosphere.mist.api._
import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.DecisionTreeClassifier
import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer}
import org.apache.spark.sql.SparkSession
object DTreeClassificationJob extends MLMistJob{
def session: SparkSession = SparkSession
.builder()
.appName(context.appName)
.config(context.getConf)
.getOrCreate()
def train(datasetPath: String, savePath: String): Map[String, Any] = {
val data = session.read.format("libsvm").load(datasetPath)
val Array(training, _) = data.randomSplit(Array(0.7, 0.3))
val labelIndexer = new StringIndexer()
.setInputCol("label")
.setOutputCol("indexedLabel")
.fit(data)
val featureIndexer = new VectorIndexer()
.setInputCol("features")
.setOutputCol("indexedFeatures")
.setMaxCategories(4)// features with > 4 distinct values are treated as continuous.
.fit(data)
val dt = new DecisionTreeClassifier()
.setLabelCol("indexedLabel")
.setFeaturesCol("indexedFeatures")
val labelConverter = new IndexToString()
.setInputCol("prediction")
.setOutputCol("predictedLabel")
.setLabels(labelIndexer.labels)
val pipeline = new Pipeline()
.setStages(Array(labelIndexer, featureIndexer, dt, labelConverter))
val model = pipeline.fit(training)
model.write.overwrite().save(savePath)
Map.empty[String, Any]
}
def serve(modelPath: String, features: List[Array[Double]]): Map[String, Any] = {
import LocalPipelineModel._
val pipeline = PipelineLoader.load(modelPath)
val data = LocalData(
LocalDataColumn("features", features)
)
val result: LocalData = pipeline.transform(data)
Map("result" -> result.select("predictedLabel").toMapList)
}
}
开发者ID:Hydrospheredata,项目名称:mist,代码行数:55,代码来源:DTreeClassificationJob.scala
示例12: OneHotEncoderJob
//设置package包名称以及导入依赖的类
import io.hydrosphere.mist.api._
import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.{OneHotEncoder, StringIndexer}
import org.apache.spark.ml.linalg.{Vector => LVector}
import org.apache.spark.sql.SparkSession
object OneHotEncoderJob extends MLMistJob {
def session: SparkSession = SparkSession
.builder()
.appName(context.appName)
.config(context.getConf)
.getOrCreate()
def train(savePath: String): Map[String, Any] = {
val df = session.createDataFrame(Seq(
(0, "a"), (1, "b"), (2, "c"),
(3, "a"), (4, "a"), (5, "c")
)).toDF("id", "category")
val indexer = new StringIndexer()
.setInputCol("category")
.setOutputCol("categoryIndex")
.fit(df)
val encoder = new OneHotEncoder()
.setInputCol("categoryIndex")
.setOutputCol("categoryVec")
val pipeline = new Pipeline().setStages(Array(indexer, encoder))
val model = pipeline.fit(df)
model.write.overwrite().save(savePath)
Map.empty[String, Any]
}
def serve(modelPath: String, features: List[String]): Map[String, Any] = {
import LocalPipelineModel._
val pipeline = PipelineLoader.load(modelPath)
val data = LocalData(LocalDataColumn("category", features))
val result = pipeline.transform(data)
val response = result.select("category", "categoryVec").toMapList.map(rowMap => {
val mapped = rowMap("categoryVec").asInstanceOf[Array[Double]]
rowMap + ("categoryVec" -> mapped)
})
Map("result" -> response)
}
}
开发者ID:Hydrospheredata,项目名称:mist,代码行数:53,代码来源:OneHotEncoderJob.scala
示例13: OneHotEncoderExample
//设置package包名称以及导入依赖的类
package org.apache.spark.examples.ml
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.ml.feature.OneHotEncoder
import org.apache.spark.ml.feature.StringIndexer
import org.apache.spark.sql.SQLContext
import scala.reflect.runtime.universe
object OneHotEncoderExample {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local").setAppName("OneHotEncoderExample")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
// $example on$
val df = sqlContext.createDataFrame(Seq(
(0, "a"),
(1, "b"),
(2, "c"),
(3, "a"),
(4, "a"),
(5, "c")
)).toDF("id", "category")
val indexer = new StringIndexer()
.setInputCol("category")
.setOutputCol("categoryIndex")
.fit(df)
val indexed = indexer.transform(df)
val encoder = new OneHotEncoder()
.setInputCol("categoryIndex")
.setOutputCol("categoryVec")
val encoded = encoder.transform(indexed)
encoded.select("id", "category", "categoryIndex", "categoryVec").show()
// $example off$
sc.stop()
}
}
开发者ID:futurely,项目名称:spark-kaggle,代码行数:41,代码来源:OneHotEncoderExample.scala
示例14: StringIndexerExample
//设置package包名称以及导入依赖的类
package org.apache.spark.examples.ml
import org.apache.spark.ml.feature.StringIndexer
import org.apache.spark.sql.SQLContext
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import scala.reflect.runtime.universe
object StringIndexerExample {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local").setAppName("StringIndexerExample")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
// $example on$
val df = sqlContext.createDataFrame(
Seq((0, "a"), (1, "b"), (2, "c"), (3, "a"), (4, "a"), (5, "c"))
).toDF("id", "category")
val indexer = new StringIndexer()
.setInputCol("category")
.setOutputCol("categoryIndex")
val indexed = indexer.fit(df).transform(df)
indexed.show()
// $example off$
sc.stop()
}
}
开发者ID:futurely,项目名称:spark-kaggle,代码行数:30,代码来源:StringIndexerExample.scala
示例15: Test
//设置package包名称以及导入依赖的类
package org.apache.spark.test
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.ml.feature.StringIndexer
object Test {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("Simple Application")
val sc = new SparkContext(conf)
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
//KMEANS
val npart = 216
def time[A](a: => A) = {
val now = System.nanoTime
val result = a
val sec = (System.nanoTime - now) * 1e-9
println("Total time (secs): " + sec)
result
}
val file = "hdfs://hadoop-master:8020/user/spark/datasets/higgs/HIGGS.csv"
val df = sqlContext.read.format("com.databricks.spark.csv").option("header", "false")
.option("inferSchema", "true").load(file).repartition(npart)
import org.apache.spark.ml.feature.VectorAssembler
val featureAssembler = new VectorAssembler().setInputCols(df.columns.drop(1)).setOutputCol("features")
val processedDf = featureAssembler.transform(df).cache()
print("Num. elements: " + processedDf.count)
// Trains a k-means model.
import org.apache.spark.ml.clustering.KMeans
val kmeans = new KMeans().setSeed(1L)
val cmodel = time(kmeans.fit(processedDf.select("features")))
//RANDOM FOREST
import org.apache.spark.ml.classification.RandomForestClassifier
val labelCol = df.columns.head
val indexer = new StringIndexer().setInputCol(labelCol).setOutputCol("labelIndexed")
val imodel = indexer.fit(processedDf)
val indexedDF = imodel.transform(processedDf)
val rf = new RandomForestClassifier().setFeaturesCol("features").setLabelCol("labelIndexed")
val model = time(rf.fit(indexedDF))
}
}
开发者ID:sramirez,项目名称:scalabilityTestSpark,代码行数:54,代码来源:Test.scala
注:本文中的org.apache.spark.ml.feature.StringIndexer类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论