• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Scala Level类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Scala中org.apache.log4j.Level的典型用法代码示例。如果您正苦于以下问题:Scala Level类的具体用法?Scala Level怎么用?Scala Level使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了Level类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Scala代码示例。

示例1: MyApp

//设置package包名称以及导入依赖的类
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.log4j.{Level, Logger}

object MyApp {
  def main(args: Array[String]) {
    val rootLogger = Logger.getRootLogger()
    rootLogger.setLevel(Level.ERROR)
    val file = args(0)
    val conf = new SparkConf(true).setAppName("My Application")
    val sc = new SparkContext(conf)
    val tf = sc.textFile(file,2)
    val splits = tf.flatMap(line => line.split(" ")).map(word =>(word,1))
    val counts = splits.reduceByKey((x,y)=>x+y)
    System.out.println(counts.collect().mkString(", "))
    sc.stop()
  }
} 
开发者ID:gibrano,项目名称:docker-spark,代码行数:20,代码来源:myapp.scala


示例2: KMeansCases

//设置package包名称以及导入依赖的类
import org.apache.spark.SparkContext
import org.apache.spark.mllib.clustering.{KMeans, KMeansModel}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.log4j.{Level, Logger}

class KMeansCases(sc: SparkContext, dataFile: String, numOfCenters: Int, maxIterations:Int) {
  //hide logger from console
  Logger.getLogger("org").setLevel(Level.OFF)
  Logger.getLogger("akka").setLevel(Level.OFF)

  val data = sc.textFile(dataFile)
  val parsedData = data.map(s => Vectors.dense(s.split('\t').map(_.toDouble))).cache()

  def KMeansInitialCenters() = {
    val initStartTime = System.nanoTime()
    val centers = new KMeansInitialization().run(sc, dataFile, numOfCenters)
    val initTimeInSeconds = (System.nanoTime() - initStartTime) / 1e9
    println(s"Initialization to find centers took " + "%.3f".format(initTimeInSeconds) + " seconds.")

    val initStartTime1 = System.nanoTime()
    val model = new KMeansModel(centers)
    val clusterModel = new KMeans().setK(numOfCenters).setMaxIterations(maxIterations).setInitialModel(model).run(parsedData)
    val initTimeInSeconds1 = (System.nanoTime() - initStartTime1) / 1e9
    println(s"Initialization with custom took " + "%.3f".format(initTimeInSeconds1) + " seconds.")

    println("\nnumber of points per cluster")
    clusterModel.predict(parsedData).map(x=>(x,1)).reduceByKey((a,b)=>a+b).foreach(x=>println(x._2))

  }

  def KMeansParallel() = {
    val initStartTime = System.nanoTime()

    val clusterModel = KMeans.train(parsedData, numOfCenters, maxIterations, 1, KMeans.K_MEANS_PARALLEL)
    val initTimeInSeconds = (System.nanoTime() - initStartTime) / 1e9
    println(s"Initialization with KMeansParaller took " + "%.3f".format(initTimeInSeconds) + " seconds.")
    println("number of points per cluster")
    clusterModel.predict(parsedData).map(x=>(x,1)).reduceByKey((a,b)=>a+b).foreach(x=>println(x._2))
  }

  def KMeansRandom() = {
    val initStartTime = System.nanoTime()

    val clusterModel = KMeans.train(parsedData, numOfCenters, maxIterations, 1, KMeans.RANDOM)
    val initTimeInSeconds = (System.nanoTime() - initStartTime) / 1e9
    println(s"Initialization with KMeasRandom took " + "%.3f".format(initTimeInSeconds) + " seconds.")
    println("number of points per cluster")

    clusterModel.predict(parsedData).map(x=>(x,1)).reduceByKey((a,b)=>a+b).foreach(x=>println(x._2))
  }
} 
开发者ID:AndyFou,项目名称:kmeans_contributions,代码行数:52,代码来源:KMeansCases.scala


示例3: driver

//设置package包名称以及导入依赖的类
import java.io._
import utils._
import SMOTE._
import org.apache.log4j.Logger
import org.apache.log4j.Level
import breeze.linalg._
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import scala.collection.mutable.{ArrayBuffer,Map}


object driver {
	
	def main(args: Array[String]) {
			
		val conf = new SparkConf()

		val options = args.map { arg =>
			arg.dropWhile(_ == '-').split('=') match {
				case Array(opt, v) => (opt -> v)
				case Array(opt) => (opt -> "")
				case _ => throw new IllegalArgumentException("Invalid argument: "+arg)
			}
		}.toMap

        val rootLogger = Logger.getRootLogger()
        rootLogger.setLevel(Level.ERROR)

		val sc = new SparkContext(conf)	

		// read in general inputs
		val inputDirectory = options.getOrElse("inputDirectory","")
		val outputDirectory = options.getOrElse("outputDirectory","")
		val numFeatures = options.getOrElse("numFeatures","0").toInt
		val oversamplingPctg = options.getOrElse("oversamplingPctg","1.0").toDouble
        val kNN = options.getOrElse("K","5").toInt
		val delimiter = options.getOrElse("delimiter",",")
		val numPartitions = options.getOrElse("numPartitions","20").toInt

		SMOTE.runSMOTE(sc, inputDirectory, outputDirectory, numFeatures, oversamplingPctg, kNN, delimiter, numPartitions)	

		println("The algorithm has finished running")
		sc.stop()
	}
} 
开发者ID:anathan90,项目名称:SparkSMOTE,代码行数:46,代码来源:driver.scala


示例4: LogUtils

//设置package包名称以及导入依赖的类
package org.iamShantanu101.spark.SentimentAnalyzer.utils

import org.apache.log4j.{Level, Logger}
import org.apache.spark.{Logging, SparkContext}


object LogUtils extends Logging {

  def setLogLevels(sparkContext: SparkContext) {

    sparkContext.setLogLevel(Level.WARN.toString)
    val log4jInitialized = Logger.getRootLogger.getAllAppenders.hasMoreElements
    if (!log4jInitialized) {
      logInfo(
        """Setting log level to [WARN] for streaming executions.
          |To override add a custom log4j.properties to the classpath.""".stripMargin)
      Logger.getRootLogger.setLevel(Level.WARN)
    }
  }
} 
开发者ID:iamShantanu101,项目名称:Twitter-Sentiment-Analyzer-Apache-Spark-Mllib,代码行数:21,代码来源:LogUtils.scala


示例5: Logging

//设置package包名称以及导入依赖的类
package org.hpi.esb.commons.util

import org.apache.log4j.{Level, Logger}

trait Logging {
  var logger: Logger = Logger.getLogger("senskaLogger")
}

object Logging {

  def setToInfo() {
    Logger.getRootLogger.setLevel(Level.INFO)
  }

  def setToDebug() {
    Logger.getRootLogger.setLevel(Level.DEBUG)
  }
} 
开发者ID:BenReissaus,项目名称:EnterpriseStreamingBenchmark,代码行数:19,代码来源:Logging.scala


示例6: PrepArgParser

//设置package包名称以及导入依赖的类
import org.apache.log4j.{Level, Logger}
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.{SparkConf, SparkContext}
import utils.Utils

import scala.util.Try
import scalax.file.Path



class PrepArgParser(arguments: Seq[String]) extends org.rogach.scallop.ScallopConf(arguments) {
  val dataset = opt[String](required = true, short = 'd',
    descr = "absolute address of the libsvm dataset. This must be provided.")
  val partitions = opt[Int](required = false, default = Some(4), short = 'p', validate = (0 <),
    descr = "Number of spark partitions to be used. Optional.")
  val dir = opt[String](required = true, default = Some("../results/"), short = 'w', descr = "working directory where results " +
    "are stored. Default is \"../results\". ")
  val method = opt[String](required = true, short = 'm',
    descr = "Method can be either \"Regression\" or \"Classification\". This must be provided")
  verify()
}

object PrepareData {
  def main(args: Array[String]) {
    //Spark conf
    val conf = new SparkConf().setAppName("Distributed Machine Learning").setMaster("local[*]")
    val sc = new SparkContext(conf)
    val sqlContext = new org.apache.spark.sql.SQLContext(sc)
    //Turn off logs
    val rootLogger = Logger.getRootLogger()
    rootLogger.setLevel(Level.ERROR)
    //Parse arguments
    val parser = new PrepArgParser(args)
    val dataset = parser.dataset()
    var workingDir = parser.dir()
    val numPartitions = parser.partitions()
    val method = parser.method()

    //Load data
    val (train, test) = method match {
      case "Classification" => Utils.loadAbsolutLibSVMBinaryClassification(dataset, numPartitions, sc)
      case "Regression" => Utils.loadAbsolutLibSVMRegression(dataset, numPartitions, sc)
      case _ => throw new IllegalArgumentException("The method " + method + " is not supported.")
    }

    // append "/" to workingDir if necessary
    workingDir = workingDir + ( if (workingDir.takeRight(1) != "/") "/" else "" )
    val trainPath: Path = Path.fromString(workingDir + "train")
    Try(trainPath.deleteRecursively(continueOnFailure = false))
    val testPath: Path = Path.fromString(workingDir + "test")
    Try(testPath.deleteRecursively(continueOnFailure = false))
    MLUtils.saveAsLibSVMFile(train, workingDir + "train")
    MLUtils.saveAsLibSVMFile(test, workingDir + "test")
  }
} 
开发者ID:mlbench,项目名称:mlbench,代码行数:56,代码来源:PrepareData.scala


示例7: Helper

//设置package包名称以及导入依赖的类
import org.apache.log4j.Logger
import org.apache.log4j.Level
import scala.collection.mutable.HashMap

object Helper {
  Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
  Logger
    .getLogger("org.apache.spark.storage.BlockManager")
    .setLevel(Level.ERROR)

  
  def configureTwitterCredentials(apiKey: String,
                                  apiSecret: String,
                                  accessToken: String,
                                  accessTokenSecret: String) {
    val configs = Map(
      "apiKey" -> apiKey,
      "apiSecret" -> apiSecret,
      "accessToken" -> accessToken,
      "accessTokenSecret" -> accessTokenSecret
    )

    println("Configuring Twitter OAuth")

    configs.foreach {
      case (key, value) =>
        if (value.trim.isEmpty) {
          throw new Exception(
            "Error setting authentication - value for " + key + " not set -> value is " + value)
        }
        val fullKey = "twitter4j.oauth." + key.replace("api", "consumer")
        System.setProperty(fullKey, value.trim)
        println("\tProperty " + fullKey + " set as [" + value.trim + "]")
    }

    println()
  }
} 
开发者ID:joined,项目名称:ET4310-SupercomputingForBigData,代码行数:39,代码来源:Helper.scala


示例8: JobRunner

//设置package包名称以及导入依赖的类
package org.wikimedia.research.recommendation.job.translation

import java.io.File
import java.text.SimpleDateFormat
import java.util.Calendar

import org.apache.log4j.{Level, LogManager, Logger}
import org.apache.spark.sql._

import scala.collection.parallel.ForkJoinTaskSupport
import scala.concurrent.forkjoin.ForkJoinPool

object JobRunner {
  val log: Logger = LogManager.getLogger(JobRunner.getClass)
  val SITE_PARALLELISM = 8

  def main(args: Array[String]): Unit = {
    log.info("Starting")
    val params = ArgParser.parseArgs(args)

    var sparkBuilder = SparkSession
      .builder()
      .appName("TranslationRecommendations")
    if (params.runLocally) {
      sparkBuilder = sparkBuilder.master("local[*]")
    }
    val spark = sparkBuilder.getOrCreate()
    Logger.getLogger("org").setLevel(Level.WARN)
    Logger.getLogger("org.wikimedia").setLevel(Level.INFO)

    val timestamp = new SimpleDateFormat("yyyy-MM-dd-HHmmss").format(Calendar.getInstance.getTime)
    log.info("Timestamp for creating files: " + timestamp)

    
    if (params.scoreItems) {
      val modelsInputDir = params.modelsDir.getOrElse(modelsOutputDir.get)
      val predictionsOutputDir = params.outputDir.map(o => new File(o, timestamp + "_predictions"))
      predictionsOutputDir.foreach(o => o.mkdir())
      ScorePredictor.predictScores(spark, modelsInputDir, predictionsOutputDir, modelSites, featureData)
    }

    spark.stop()
    log.info("Finished")
  }
} 
开发者ID:schana,项目名称:recommendation-translation,代码行数:46,代码来源:JobRunner.scala


示例9: BorderFlowClustering

//设置package包名称以及导入依赖的类
package net.sansa_stack.examples.spark.ml.clustering

import scala.collection.mutable
import org.apache.spark.sql.SparkSession
import org.apache.log4j.{ Level, Logger }
import net.sansa_stack.ml.spark.clustering.BorderFlow

object BorderFlowClustering {
  def main(args: Array[String]) = {
    if (args.length < 1) {
      System.err.println(
        "Usage: BorderFlow <input> ")
      System.exit(1)
    }
    val input = args(0) //"src/main/resources/BorderFlow_Sample1.txt"
    val optionsList = args.drop(1).map { arg =>
      arg.dropWhile(_ == '-').split('=') match {
        case Array(opt, v) => (opt -> v)
        case _             => throw new IllegalArgumentException("Invalid argument: " + arg)
      }
    }
    val options = mutable.Map(optionsList: _*)

    options.foreach {
      case (opt, _) => throw new IllegalArgumentException("Invalid option: " + opt)
    }
    println("============================================")
    println("| Border Flow example                      |")
    println("============================================")

    val spark = SparkSession.builder
      .master("local[*]")
      .appName(" BorderFlow example (" + input + ")")
      .getOrCreate()
    Logger.getRootLogger.setLevel(Level.ERROR)

    BorderFlow(spark, input)

    spark.stop
  }
} 
开发者ID:SANSA-Stack,项目名称:SANSA-Examples,代码行数:42,代码来源:BorderFlowClustering.scala


示例10: RDFGraphPIClustering

//设置package包名称以及导入依赖的类
package net.sansa_stack.examples.spark.ml.clustering

import scala.collection.mutable
import org.apache.spark.sql.SparkSession
import org.apache.log4j.{ Level, Logger }
import org.apache.spark.graphx.GraphLoader
import net.sansa_stack.ml.spark.clustering.{ RDFGraphPICClustering => RDFGraphPICClusteringAlg }

object RDFGraphPIClustering {
  def main(args: Array[String]) = {
    if (args.length < 3) {
      System.err.println(
        "Usage: RDFGraphPIClustering <input> <k> <numIterations>")
      System.exit(1)
    }
    val input = args(0) //"src/main/resources/BorderFlow_Sample1.txt"
    val k = args(1).toInt
    val numIterations = args(2).toInt
    val optionsList = args.drop(3).map { arg =>
      arg.dropWhile(_ == '-').split('=') match {
        case Array(opt, v) => (opt -> v)
        case _             => throw new IllegalArgumentException("Invalid argument: " + arg)
      }
    }
    val options = mutable.Map(optionsList: _*)

    options.foreach {
      case (opt, _) => throw new IllegalArgumentException("Invalid option: " + opt)
    }
    println("============================================")
    println("| Power Iteration Clustering   example     |")
    println("============================================")

    val sparkSession = SparkSession.builder
      .master("local[*]")
      .appName(" Power Iteration Clustering example (" + input + ")")
      .getOrCreate()
    Logger.getRootLogger.setLevel(Level.ERROR)

    // Load the graph 
    val graph = GraphLoader.edgeListFile(sparkSession.sparkContext, input)

    val model = RDFGraphPICClusteringAlg(sparkSession, graph, k, numIterations).run()

    val clusters = model.assignments.collect().groupBy(_.cluster).mapValues(_.map(_.id))
    val assignments = clusters.toList.sortBy { case (k, v) => v.length }
    val assignmentsStr = assignments
      .map {
        case (k, v) =>
          s"$k -> ${v.sorted.mkString("[", ",", "]")}"
      }.mkString(",")
    val sizesStr = assignments.map {
      _._2.size
    }.sorted.mkString("(", ",", ")")
    println(s"Cluster assignments: $assignmentsStr\ncluster sizes: $sizesStr")

    sparkSession.stop
  }

} 
开发者ID:SANSA-Stack,项目名称:SANSA-Examples,代码行数:61,代码来源:RDFGraphPIClustering.scala


示例11: RDFByModularityClustering

//设置package包名称以及导入依赖的类
package net.sansa_stack.examples.spark.ml.clustering

import scala.collection.mutable
import org.apache.spark.sql.SparkSession
import org.apache.log4j.{ Level, Logger }
import net.sansa_stack.ml.spark.clustering.{ RDFByModularityClustering => RDFByModularityClusteringAlg }

object RDFByModularityClustering {

  def main(args: Array[String]) = {
    if (args.length < 3) {
      System.err.println(
        "Usage: RDFByModularityClustering <input> <output> <numIterations>")
      System.exit(1)
    }
    val graphFile = args(0) //"src/main/resources/Clustering_sampledata.nt",
    val outputFile = args(1)
    val numIterations = args(2).toInt
    val optionsList = args.drop(3).map { arg =>
      arg.dropWhile(_ == '-').split('=') match {
        case Array(opt, v) => (opt -> v)
        case _             => throw new IllegalArgumentException("Invalid argument: " + arg)
      }
    }
    val options = mutable.Map(optionsList: _*)

    options.foreach {
      case (opt, _) => throw new IllegalArgumentException("Invalid option: " + opt)
    }
    println("============================================")
    println("| RDF By Modularity Clustering example     |")
    println("============================================")

    val sparkSession = SparkSession.builder
      .master("local[*]")
      .appName(" RDF By Modularity Clustering example (" + graphFile + ")")
      .getOrCreate()
    Logger.getRootLogger.setLevel(Level.ERROR)

    RDFByModularityClusteringAlg(sparkSession.sparkContext, numIterations, graphFile, outputFile)

    sparkSession.stop

  }

} 
开发者ID:SANSA-Stack,项目名称:SANSA-Examples,代码行数:47,代码来源:RDFByModularityClustering.scala


示例12: MyLog1

//设置package包名称以及导入依赖的类
package com.chapter14.Serilazition

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.log4j.LogManager
import org.apache.log4j.Level
import org.apache.log4j.Logger

object MyLog1 extends Serializable {
 def main(args: Array[String]):Unit= {
   // Stting logger level as WARN
   val log = LogManager.getRootLogger
   log.setLevel(Level.WARN)
   @transient lazy val log2 = org.apache.log4j.LogManager.getLogger("myLogger")

   // Creating Spark Context
   val conf = new SparkConf().setAppName("My App").setMaster("local[*]")
   val sc = new SparkContext(conf)

   //Started the computation and printing the logging inforamtion
   //log.warn("Started")
   //val i = 0
   val data = sc.parallelize(0 to 100000)
   data.foreach(i => log.info("My number"+ i))
   data.collect()
   log.warn("Finished")
 }
} 
开发者ID:PacktPublishing,项目名称:Scala-and-Spark-for-Big-Data-Analytics,代码行数:28,代码来源:MyLog.scala


示例13: MyMapper

//设置package包名称以及导入依赖的类
package com.chapter14.Serilazition

import org.apache.log4j.{Level, LogManager, PropertyConfigurator}
import org.apache.spark._
import org.apache.spark.rdd.RDD

class MyMapper(n: Int) extends Serializable{
 @transient lazy val log = org.apache.log4j.LogManager.getLogger("myLogger")
 def MyMapperDosomething(rdd: RDD[Int]): RDD[String] =
   rdd.map{ i =>
     log.warn("mapping: " + i)
     (i + n).toString
   }
}

//Companion object
object MyMapper {
 def apply(n: Int): MyMapper = new MyMapper(n)
}

//Main object
object MyLog {
 def main(args: Array[String]) {
   val log = LogManager.getRootLogger
   log.setLevel(Level.WARN)
   val conf = new SparkConf()
                  .setAppName("My App")
                  .setMaster("local[*]")
   conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")               
   val sc = new SparkContext(conf)

   log.warn("Started")
   val data = sc.parallelize(1 to 100000)
   val mapper = MyMapper(1)
   val other = mapper.MyMapperDosomething(data)
   other.collect()
   log.warn("Finished")
 }
} 
开发者ID:PacktPublishing,项目名称:Scala-and-Spark-for-Big-Data-Analytics,代码行数:40,代码来源:MyLogCompleteDemo.scala


示例14: MyMapper2

//设置package包名称以及导入依赖的类
package com.chapter14.Serilazition

import org.apache.log4j.{ Level, LogManager, PropertyConfigurator }
import org.apache.spark._
import org.apache.spark.rdd.RDD

class MyMapper2(n: Int) {
  @transient lazy val log = org.apache.log4j.LogManager.getLogger("myLogger")
  def MyMapperDosomething(rdd: RDD[Int]): RDD[String] =
    rdd.map { i =>
      log.warn("mapping: " + i)
      (i + n).toString
    }
}

//Companion object
object MyMapper2 {
  def apply(n: Int): MyMapper = new MyMapper(n)
}

//Main object
object KyroRegistrationDemo {
  def main(args: Array[String]) {
    val log = LogManager.getRootLogger
    log.setLevel(Level.WARN)
    val conf = new SparkConf()
      .setAppName("My App")
      .setMaster("local[*]")
    conf.registerKryoClasses(Array(classOf[MyMapper2]))
    conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
    val sc = new SparkContext(conf)

    log.warn("Started")
    val data = sc.parallelize(1 to 100000)
    val mapper = MyMapper2(10)
    val other = mapper.MyMapperDosomething(data)
    other.collect()
    log.warn("Finished")
  }
} 
开发者ID:PacktPublishing,项目名称:Scala-and-Spark-for-Big-Data-Analytics,代码行数:41,代码来源:KyroRegistrationDemo.scala


示例15: MyMapper

//设置package包名称以及导入依赖的类
package com.chapter16.SparkTesting

import org.apache.log4j.{ Level, LogManager }
import org.apache.spark._
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession

class MyMapper(n: Int) extends Serializable {
  @transient lazy val log = org.apache.log4j.LogManager.getLogger("myLogger")
  def logMapper(rdd: RDD[Int]): RDD[String] =
    rdd.map { i =>
      log.warn("mapping: " + i)
      (i + n).toString
    }
}

//Companion object
object MyMapper {
  def apply(n: Int): MyMapper = new MyMapper(n)
}

//Main object
object myCustomLogwithClosureSerializable {
  def main(args: Array[String]) {
    val log = LogManager.getRootLogger
    log.setLevel(Level.WARN)
    val spark = SparkSession
      .builder
      .master("local[*]")
      .config("spark.sql.warehouse.dir", "E:/Exp/")
      .appName("Testing")
      .getOrCreate()
    log.warn("Started")
    val data = spark.sparkContext.parallelize(1 to 100000)
    val mapper = MyMapper(1)
    val other = mapper.logMapper(data)
    other.collect()
    log.warn("Finished")
  }
} 
开发者ID:PacktPublishing,项目名称:Scala-and-Spark-for-Big-Data-Analytics,代码行数:41,代码来源:myCustomLogwithClosureSerializable.scala


示例16: myCustomLogwithoutSerializable

//设置package包名称以及导入依赖的类
package com.chapter16.SparkTesting

import org.apache.log4j.LogManager
import org.apache.log4j.Level
import org.apache.spark.sql.SparkSession

object myCustomLogwithoutSerializable {
  def main(args: Array[String]): Unit = {   
    val log = LogManager.getRootLogger
    
    //Everything is printed as INFO onece the log level is set to INFO untill you set the level to new level for example WARN. 
    log.setLevel(Level.INFO)
    log.info("Let's get started!")
    
     // Setting logger level as WARN: after that nothing prints other then WARN
    log.setLevel(Level.WARN)
    
    // Creating Spark Session
    val spark = SparkSession
      .builder
      .master("local[*]")
      .config("spark.sql.warehouse.dir", "E:/Exp/")
      .appName("Logging")
      .getOrCreate()

    // These will note be printed!
    log.info("Get prepared!")
    log.trace("Show if there is any ERROR!")

    //Started the computation and printing the logging information
    log.warn("Started")
    spark.sparkContext.parallelize(1 to 5).foreach(println)
    log.warn("Finished")
  }
} 
开发者ID:PacktPublishing,项目名称:Scala-and-Spark-for-Big-Data-Analytics,代码行数:36,代码来源:myCustomLog.scala


示例17: myCustomLogwithClosure

//设置package包名称以及导入依赖的类
package com.chapter14.Serilazition

import org.apache.log4j.LogManager
import org.apache.log4j.Level
import org.apache.log4j.Logger
import org.apache.spark.sql.SparkSession

object myCustomLogwithClosure extends Serializable {
 def main(args: Array[String]): Unit = {   
    val log = LogManager.getRootLogger
    
    //Everything is printed as INFO onece the log level is set to INFO untill you set the level to new level for example WARN. 
    log.setLevel(Level.INFO)
    log.info("Let's get started!")
    
     // Setting logger level as WARN: after that nothing prints other then WARN
    log.setLevel(Level.WARN)
    
    // Creating Spark Session
    val spark = SparkSession
      .builder
      .master("local[*]")
      .config("spark.sql.warehouse.dir", "E:/Exp/")
      .appName("Logging")
      .getOrCreate()

    // These will note be printed!
    log.info("Get prepared!")
    log.trace("Show if there is any ERROR!")

    //Started the computation and printing the logging information
    log.warn("Started")
    val data = spark.sparkContext.parallelize(0 to 100000)
    data.foreach(i => log.info("My number"+ i))
    data.collect()
    log.warn("Finished")
 }
} 
开发者ID:PacktPublishing,项目名称:Scala-and-Spark-for-Big-Data-Analytics,代码行数:39,代码来源:myCustomLogwithClosure.scala


示例18: CountingInAStreamDatasetExpGroupBy

//设置package包名称以及导入依赖的类
package com.malaska.spark.training.streaming.structured

import com.malaska.spark.training.streaming.{Message, MessageBuilder}
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.streaming.Trigger
import org.apache.spark.sql.functions._

object CountingInAStreamDatasetExpGroupBy {
  Logger.getLogger("org").setLevel(Level.OFF)
  Logger.getLogger("akka").setLevel(Level.OFF)

  def main(args:Array[String]): Unit = {
    val host = args(0)
    val port = args(1)
    val checkpointFolder = args(2)

    val isLocal = true

    val sparkSession = if (isLocal) {
      SparkSession.builder
        .master("local")
        .appName("my-spark-app")
        .config("spark.some.config.option", "config-value")
        .config("spark.driver.host","127.0.0.1")
        .config("spark.sql.parquet.compression.codec", "gzip")
        .master("local[3]")
        .getOrCreate()
    } else {
      SparkSession.builder
        .appName("my-spark-app")
        .config("spark.some.config.option", "config-value")
        .master("local[3]")
        .getOrCreate()
    }

    import sparkSession.implicits._

    val socketLines = sparkSession.readStream
      .format("socket")
      .option("host", host)
      .option("port", port)
      .load()

    val messageDs = socketLines.as[String].map(line => {
      MessageBuilder.build(line)
    }).as[Message]

    val tickerCount = messageDs.groupBy("ticker", "destUser").agg(sum($"price"), avg($"price"))

    val ticketOutput = tickerCount.writeStream
      .format("Console")
      .trigger(Trigger.ProcessingTime("5 seconds"))
      .option("checkpointLocation", checkpointFolder)
      .outputMode("complete")
      .format("console")
      .start()

    ticketOutput.awaitTermination()
  }
} 
开发者ID:TedBear42,项目名称:spark_training,代码行数:62,代码来源:CountingInAStreamDatasetExpGroupBy.scala


示例19: CountingInAStreamExpGroupBy

//设置package包名称以及导入依赖的类
package com.malaska.spark.training.streaming.structured

import com.malaska.spark.training.streaming.{Message, MessageBuilder}
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.streaming.{OutputMode, Trigger}
import org.apache.spark.sql.functions._

object CountingInAStreamExpGroupBy {
  Logger.getLogger("org").setLevel(Level.OFF)
  Logger.getLogger("akka").setLevel(Level.OFF)

  def main(args:Array[String]): Unit = {
    val host = args(0)
    val port = args(1)
    val checkpointFolder = args(2)

    val isLocal = true

    val sparkSession = if (isLocal) {
      SparkSession.builder
        .master("local")
        .appName("my-spark-app")
        .config("spark.some.config.option", "config-value")
        .config("spark.driver.host","127.0.0.1")
        .config("spark.sql.parquet.compression.codec", "gzip")
        .master("local[3]")
        .getOrCreate()
    } else {
      SparkSession.builder
        .appName("my-spark-app")
        .config("spark.some.config.option", "config-value")
        .master("local[3]")
        .getOrCreate()
    }

    import sparkSession.implicits._

    val socketLines = sparkSession.readStream
      .format("socket")
      .option("host", host)
      .option("port", port)
      .load()

    val messageDs = socketLines.as[String].
      flatMap(line => line.toLowerCase().split(" "))

    // Generate running word count
    val wordCounts = messageDs.groupBy("value").count()

    // Start running the query that prints the running counts to the console
    val query = wordCounts.writeStream
      .outputMode("complete")
      .format("console")
      .start()

    query.awaitTermination()
  }
} 
开发者ID:TedBear42,项目名称:spark_training,代码行数:60,代码来源:CountingInAStreamExpGroupBy.scala


示例20: CountingInAStreamExpBatchCounting

//设置package包名称以及导入依赖的类
package com.malaska.spark.training.streaming.dstream

import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.SparkSession
import org.apache.spark.streaming.{Seconds, StreamingContext}

object CountingInAStreamExpBatchCounting {
  Logger.getLogger("org").setLevel(Level.OFF)
  Logger.getLogger("akka").setLevel(Level.OFF)

  def main(args:Array[String]): Unit = {
    val host = args(0)
    val port = args(1)
    val checkpointFolder = args(2)

    val isLocal = true

    val sparkSession = if (isLocal) {
      SparkSession.builder
        .master("local")
        .appName("my-spark-app")
        .config("spark.some.config.option", "config-value")
        .config("spark.driver.host","127.0.0.1")
        .config("spark.sql.parquet.compression.codec", "gzip")
        .enableHiveSupport()
        .master("local[3]")
        .getOrCreate()
    } else {
      SparkSession.builder
        .appName("my-spark-app")
        .config("spark.some.config.option", "config-value")
        .enableHiveSupport()
        .getOrCreate()
    }

    val ssc = new StreamingContext(sparkSession.sparkContext, Seconds(2))
    ssc.checkpoint(checkpointFolder)

    val lines = ssc.socketTextStream(host, port.toInt)
    val words = lines.flatMap(line => line.toLowerCase.split(" "))
    val wordCounts = words.map(word => (word, 1))
      .reduceByKey((a,b) => a + b)

    wordCounts.foreachRDD(rdd => {
      println("{")
      val localCollection = rdd.collect()
      println("  size:" + localCollection.length)
      localCollection.foreach(r => println("  " + r))
      println("}")
    })

    ssc.start()

    ssc.awaitTermination()


  }
} 
开发者ID:TedBear42,项目名称:spark_training,代码行数:59,代码来源:CountingInAStreamExpBatchCounting.scala



注:本文中的org.apache.log4j.Level类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Scala AtomicReference类代码示例发布时间:2022-05-23
下一篇:
Scala Pattern类代码示例发布时间:2022-05-23
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap