• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python NeuralNetwork.NeuralNetwork类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中NeuralNetwork.NeuralNetwork的典型用法代码示例。如果您正苦于以下问题:Python NeuralNetwork类的具体用法?Python NeuralNetwork怎么用?Python NeuralNetwork使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了NeuralNetwork类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: createLocalizationNetwork

    def createLocalizationNetwork(self):
        
        if self.localizationType == "Rotary":
            return RotaryLayer()
        
        if self.localizationType == "Scaled":
            return ScaledLayer()
        
        if self.localizationType == "ScaledUp":
            return ScaledUpLayer()
        
        if self.localizationType == "ScaledWithOffset":
            return ScaledWithOffsetLayer()
        
        if self.localizationType == "Unitary":
            return UnitaryLayer()
        
        if self.localizationType == "FullyConnected":
            network = NeuralNetwork()
            network.addLayer(FullyConnectedLayer(self.inputW * self.inputH * self.inputC, 32, 0, "ReLu"))
            network.addLayer(FullyConnectedLayer(32, 3*4, 1, "ReLu"))
            return network

        if self.localizationType == "ConvLayer":
            network = NeuralNetwork()
            network.addLayer(ConvLayer((self.inputW, self.inputH, self.inputC), (3, 3, self.inputC, self.inputC), 0, "ReLu"))
            network.addLayer(FullyConnectedLayer(self.inputW * self.inputH * self.inputC, 3*4, 1, "ReLu"))
            return network
开发者ID:sudnya,项目名称:misc,代码行数:28,代码来源:SpatialTransformerLayer.py


示例2: run_iris_comparison

def run_iris_comparison(num=25):
    """ Compare a few different test and
    training configurations
    """
    print("Running neural network {} times each for three different sets of training and testing files".format(num))
    test_files = ['iris_tes.txt', 'iris_tes50.txt',\
            'iris_tes30.txt']
    train_files = ['iris_tra.txt', 'iris_tra100.txt',\
            'iris_tra120.txt']

    for i in range(0, len(test_files)):
        print("trainfile = {}     testfile = {}".format(train_files[i], test_files[i]))

    config_obj = openJsonConfig('conf/annconfig_iris.json')
    summary = {}

    for i in range(0, len(test_files)):
        config_obj['testing_file'] = test_files[i]
        config_obj['training_file'] = train_files[i]
        config_obj['plot_error'] = False
        config_obj['test'] = False
        crates = []

        for j in range(0, num):
            nn = NeuralNetwork(config_obj)
            nn.back_propagation()
            cmat, crate, cout = nn.classification_test(nn.testing_data, nn.weights_best)
            crates.append(crate)
        summary[config_obj['testing_file']] =\
            nn_stats(np.array(crates))
    print print_stat_summary(summary) 
开发者ID:beparadox,项目名称:neural_networks,代码行数:31,代码来源:runNN.py


示例3: test

def test(base_directory, ignore_word_file, filtered, nb_hidden_neurons, nb_max_iteration):
    print("post reading...")
    pr = PostReader(base_directory, ignore_word_file, filtered)

    print("creating neural network...")
    nn = NeuralNetwork(pr.get_word_set(), nb_hidden_neurons, nb_max_iteration)

    print("training...")
    training_set = pr.get_training_set()
    t0 = time.clock()
    nb_iteration = nn.train(training_set)
    training_time = time.clock() - t0

    print("verification...")
    t0 = time.clock()
    verification_set = pr.get_verification_set()
    verification_time = time.clock() - t0
    nb_correct = 0
    for msg in verification_set:
        final = NeuralNetwork.threshold(nn.classify(msg[0]))
        if final == msg[1]:
            nb_correct += 1

    print("=======================")
    print("training set length    : %s" % len(training_set))
    print("nb hidden neurons      : %s" % nb_hidden_neurons)
    print("nb max iterations      : %s" % nb_max_iteration)
    print("nb iterations          : %s" % nb_iteration)
    print("verification set length: %s posts" % len(verification_set))
    print("nb correct classified  : %s posts" % nb_correct)
    print("rate                   : %i %%" % (nb_correct / len(verification_set) * 100))
    print("training time          : %i s" % training_time)
    print("verification time      : %i s" % verification_time)
    print("=======================")
    print("")
开发者ID:maeberli,项目名称:ClassificationPosts,代码行数:35,代码来源:ClassificationPosts.py


示例4: accuracy

 def accuracy(self, number_layers, numbers_neurons, learning_rate):
     """Returns the accuracy of a neural network associated with an Individual"""
     net = NeuralNetwork(number_layers, numbers_neurons, learning_rate, X_train=self.dataset.X_train, Y_train=self.dataset.Y_train, X_test=self.dataset.X_test, Y_test=self.dataset.Y_test)
     #train neural NeuralNetwork
     net.train()
     #calcule accurate
     acc = net.classify()
     #set AUC
     self.__auc = net.get_auc()
     return acc
开发者ID:victorddiniz,项目名称:DecodingBrainSignalsProject,代码行数:10,代码来源:Individual.py


示例5: main

def main():
    data = np.array([[1.0, 0.0, 0.0, 0.0, 0.0],
                     [0.0, 1.0, 0.0, 0.0, 0.0]
                    ])
    result = np.array([[0.0, 0.0, 0.0, 0.0, 1.0],
                       [0.0, 0.0, 0.0, 1.0, 0.0]
                      ])

    Nn = NeuralNetwork([5, 5, 5])
    print Nn.feedforward(np.array([[5], [5], [5], [5], [5]]))
    # to do trainning function
    print Nn.feedforward(np.array([[5], [5], [5], [5], [5]]))
开发者ID:baptistejacob,项目名称:MachineLearningToolbox,代码行数:12,代码来源:example.py


示例6: __init__

    def __init__(self, in_dim, hidden_dim, out_dim, activation, loss_type,
                 layer_num=0):
        NeuralNetwork.__init__(self, activation, loss_type)

        args = [self.activation, self.grad_activation]
        self.layers = []
        self.layers.append(FullyConnectedLayer(in_dim, hidden_dim, *args))
        for _ in xrange(layer_num):
            self.layers.append(FullyConnectedLayer(hidden_dim, hidden_dim, *args))
        if loss_type == 'mse':
            self.layers.append(FullyConnectedLayer(hidden_dim, out_dim, *args))
        else:
            from SoftmaxLayer import SoftmaxLayer
            self.layers.append(SoftmaxLayer(hidden_dim, out_dim, *args))
开发者ID:dxmtb,项目名称:nn,代码行数:14,代码来源:MLP.py


示例7: main

def main():

	print "Starting Support Vector Machine Simulations"

	# svr = SupportVectorMachine()
	# svr.simulate()

 # 	basicNeuralNetwork = NeuralNetwork()
	# basicNeuralNetwork.simulate()


	# svr1 = SupportVectorMachine(20, 10, 500, 60)
	# svr1.simulate()

	# neuralNetwork1 = NeuralNetwork(20, 10, 500, 60)
	# neuralNetwork1.simulate()

	# # # larger window

	# svr2 = SupportVectorMachine(48, 10, 200)
	# svr2.simulate()

	# neuralNetwork2 = NeuralNetwork(48, 10, 200)
	# neuralNetwork2.simulate()

	# # # large window

	# svr3 = SupportVectorMachine(32, 10, 200)
	# svr3.simulate()

	# neuralNetwork3 = NeuralNetwork(32, 10, 200)
	# neuralNetwork3.simulate()

	# # # day sized window

	# svr4 = SupportVectorMachine(24, 10, 200)
	# svr4.simulate()

	# neuralNetwork4 = NeuralNetwork(24, 10, 200)
	# neuralNetwork4.simulate()

	# half a day sized window

	svr5 = SupportVectorMachine(12, 10, 200)
	svr5.simulate()

	neuralNetwork5 = NeuralNetwork(12, 10, 200)
	neuralNetwork5.simulate()
开发者ID:EllenSebastian,项目名称:AI-bitcoin,代码行数:48,代码来源:SupportVector.py


示例8: createNeuralNetwork

    def createNeuralNetwork(self, load = False):
        listHidden1 = [Neuron("1", 6, load), Neuron("2", 6, load), Neuron("3", 6, load)]
        listHidden2 = [Neuron("4", 3, load), Neuron("5", 3, load)]
        listHidden3 = [Neuron("6", 2, load)]
        listNetwork = [NeuronLayer(listHidden1), NeuronLayer(listHidden2), NeuronLayer(listHidden3)]

        self.neuralNetwork = NeuralNetwork(listNetwork)
开发者ID:Nyrii,项目名称:-EPITECH-Zappy,代码行数:7,代码来源:AI.py


示例9: eventListener

 def eventListener(self):
     tickTime = pygame.time.Clock()
     holdTime = 0
     pygame.init()
     DISPLAYSURF = pygame.display.set_mode((900, 900))
     DISPLAYSURF.fill((255, 255, 255, 255))
     while True:
         for event in pygame.event.get():
             if event.type == pygame.MOUSEBUTTONDOWN:
                 holdTime = tickTime.tick(60)
                 print self.alias, "DOWN: ", holdTime
             if event.type == pygame.MOUSEBUTTONUP:
                 if holdTime < 3000:
                     print "----------------------------"
                     print self.alias, "CLASSIFYING... "
                     print "----------------------------"
                     pygame.mixer.music.load("perro.wav")
                     self.takePicture()
                     #Para pruebas de reproducción --- (En mi compu no furula)
                     self.play("perro")
                     self.play("gato")
                     self.play("desconocido")
                     # -------------------------------
                     self.startClasification()
                     print self.alias, "UP: ", holdTime
                     holdTime = 0
                 else:
                     print self.alias, ": ", holdTime, " miliSegundos"
                     networkModel, netMean, prototype, classes = self.netHandler.getNextNet()
                     self.neuralNetwork = NeuralNetwork(networkModel, netMean, prototype, classes)
                     holdTime = 0
             if event.type == pygame.QUIT:
                 sys.exit(0)
开发者ID:ESCOM-PROYS,项目名称:ClasificadorEnLinea,代码行数:33,代码来源:Classifier.py


示例10: createFullyConnectedNetwork

    def createFullyConnectedNetwork(parameters):
        logger.info ("Creating a fully connected network")
        network = NeuralNetwork()
        
        idx = 0
        for inputSize, outputSize in parameters:
            isLastLayer = (idx == (len(parameters) - 1))

            if isLastLayer:
                nonlinearity = "Null"
            else:
                nonlinearity = "ReLu"

            network.addLayer(FullyConnectedLayer(inputSize, outputSize, idx, nonlinearity))
            idx += 1

        return network
开发者ID:sudnya,项目名称:misc,代码行数:17,代码来源:NeuralNetworkBuilder.py


示例11: process

    def process(self):
        print '[ Prepare input images ]'
        inputs = self.prepare_images()

        print '[ Init Network ]'
        network = NeuralNetwork(inputs, self.p, self.image_size, self.min_error)

        print '[ Start training]'
        network.training()
        # network.load_weights()

        print '[ Start recovering picture ]'
        rec_images = network.process()

        rec_picture = self.recover_image(rec_images)

        print '[ Save recoverd image to file ]'
        misc.imsave('images/rec_image.bmp', rec_picture)
开发者ID:alexkarpovich,项目名称:NeuralNetwork,代码行数:18,代码来源:Compressor.py


示例12: __init__

 def __init__(self):
     self.alias = "[CLASSIFIER]>> "
     print self.alias , "Iniciando Clasificador..."
     self.netHandler = NeuralNetworksHandler()
     self.imageProcesor = ImagePreprocesor(wideSegment=150, highSegment=150, horizontalStride=50, verticalStride=50, withResizeImgOut=250, highResizeImgOut=250)
     networkModel, netMean, prototype, classes = self.netHandler.getNetworkByIndex(0)
     self.neuralNetwork = NeuralNetwork(networkModel,  prototype, netMean, classes)
     self.speaker = AudioPlayer()
     self.eventListener()
开发者ID:ESCOM-PROYS,项目名称:ClasificadorEnLinea,代码行数:9,代码来源:Classifier.py


示例13: NeuralNetworkTestcase

class NeuralNetworkTestcase(unittest.TestCase):
    def setUp(self):
        self.nn = NeuralNetwork(['a', 'b'], 2)

        self.nn.hidden_neurons[0].input_weights['a'] = 0.25
        self.nn.hidden_neurons[0].input_weights['b'] = 0.50
        self.nn.hidden_neurons[0].bias = 0.0

        self.nn.hidden_neurons[1].input_weights['a'] = 0.75
        self.nn.hidden_neurons[1].input_weights['b'] = 0.75
        self.nn.hidden_neurons[1].bias = 0.0

        self.nn.final_neuron.input_weights[0] = 0.5
        self.nn.final_neuron.input_weights[1] = 0.5
        self.nn.final_neuron.bias = 0.0

    def test_calc(self):
        self.nn.classify({'a': 1.0, 'b': 0.0})
        self.assertAlmostEquals(self.nn.final_neuron.last_output, 0.650373, 5)
开发者ID:maeberli,项目名称:ClassificationPosts,代码行数:19,代码来源:NeuralNetworkTestcase.py


示例14: __trainbAction

    def __trainbAction(self):
        config = {'input_size': 30 * 30,  'hidden_size': 30 * 30, 'lambda': 1, 'num_labels': (len(self.learned))}
        self.nn = NeuralNetwork(config=config)

        cost_params_fscore = []
        for i in range(self._k):
            cost_params_fscore.append(self.nn.train(self.training_X[i], self.training_y[i], self.cross_validation_set[i], self.test_set, self.cross_validation_set_y[i], self.testing_y))

        best_model = max(cost_params_fscore, key=itemgetter(2))
        print best_model[0], best_model[2]
开发者ID:LucidComplex,项目名称:python-face-recognition,代码行数:10,代码来源:YourFaceSoundsFamiliar.py


示例15: Creature

class Creature(Entity):
    BASE_SHAPE = [[10, 0], [0, -10], [-5, -5], [-5, 5], [0, 10]]
    MAX_HEALTH = 100

    def __init__(self, world, position, orientation, color):
        self.polygonshape = PolygonShape(self.BASE_SHAPE)
        self.position = position
        self.orientation = orientation
        self.color = color
        self.movespeed = MoveSpeed(0)
        self.turnspeed = TurnSpeed(0)

        self.neuralnetwork = NeuralNetwork(2, 7, 2)
        self.neuralnetwork.initialize_random_network()
        self.health = Health(self.MAX_HEALTH)
        self.foodseen = FoodSeen(0)

        bounding_square = get_bounding_square(self.BASE_SHAPE)
        self.collider = Collider(self, bounding_square, self.BASE_SHAPE)
开发者ID:jpinsonault,项目名称:creature_sim,代码行数:19,代码来源:Entities.py


示例16: createSpatialTransformerWithFullyConnectedNetwork

    def createSpatialTransformerWithFullyConnectedNetwork(parameters, isVerbose):
        logger.info ("Creating a fully connected network with a spatial transformer input layer")
        network = NeuralNetwork()
        
        idx = 0
        for inputSize, outputSize in parameters:
            isLastLayer = (idx == (len(parameters) - 1))

            if isLastLayer:
                nonlinearity = "Null"
            else:
                nonlinearity = "ReLu"

            if idx == 0:
                network.addLayer(SpatialTransformerLayer(inputSize[0], inputSize[1], inputSize[2],
                    outputSize[0], outputSize[1], outputSize[2], "ConvLayer"))
            else:
                network.addLayer(FullyConnectedLayer(inputSize, outputSize, idx, nonlinearity))
            idx += 1

        return network
开发者ID:sudnya,项目名称:misc,代码行数:21,代码来源:NeuralNetworkBuilder.py


示例17: exo8

def exo8():
    print("\n\n>>EXERCICE 8 MNIST")
    Xtrain, ytrain, Xvalid, yvalid, Xtest, ytest = utils.readMNISTfile()
    default_h = 30
    maxIter = 1
    neuralNetwork = NeuralNetwork(len(Xtrain[0]), default_h, utils.getClassCount(ytrain),K=100)
    neuralNetworkEfficient = NeuralNetworkEfficient(len(Xtrain[0]), default_h, utils.getClassCount(ytrain),K=100)
    neuralNetworkEfficient._w1 = neuralNetwork._w1
    neuralNetworkEfficient._w2 = neuralNetwork._w2
    print("--- Reseau de depart ---")
    t1 = datetime.now()
    neuralNetwork.train(Xtrain, ytrain, maxIter)
    t2 = datetime.now()
    delta = t2 - t1
    print("Cela a mis : " + str(delta.total_seconds()) + " secondes")
    print("--- Reseau optimise ---")
    t1 = datetime.now()
    neuralNetworkEfficient.train(Xtrain, ytrain, maxIter)
    t2 = datetime.now()
    delta = t2 - t1
    print("Cela a mis : " + str(delta.total_seconds()) + " secondes")
开发者ID:PierreGe,项目名称:neural-network,代码行数:21,代码来源:main.py


示例18: exo67

def exo67():
    print("\n\n>>EXERCICE 6 et 7 : Calcul matriciel")
    print(" --- K=1 ---")
    #Xtrain, ytrain, Xvalid, yvalid, Xtest, ytest = utils.readMoonFile()
    Xtrain = [[30, 20, 40, 50], [25, 15, 35, 45]]
    ytrain = [0,0]
    default_h = 2
    nn = NeuralNetwork(len(Xtrain[0]), default_h, utils.getClassCount(ytrain), K=1, wd=0)
    nne = NeuralNetworkEfficient(len(Xtrain[0]), default_h, utils.getClassCount(ytrain), K=1, wd=0)
    nne._w1 = nn._w1 # trick pour que l'aleatoire soit egale
    nne._w2 = nn._w2
    nn.train(Xtrain,ytrain,1)
    nne.train(Xtrain,ytrain,1)
    utils.compareNN(nn,nne)
    print(" --- K=10 ---")
    Xtrain = [[30, 20, 40, 50], [25, 15, 35, 45],[30, 76, 45, 44],[89, 27, 42, 52],[30, 24, 44, 53],[89, 25, 45, 50],[30, 20, 40, 50],[30, 65, 47, 50],[30, 34, 40, 50],[39, 20, 29, 58]]
    ytrain = [0,0,0,0,0,0,0,0,0,0]
    default_h = 2
    nn = NeuralNetwork(len(Xtrain[0]), default_h, utils.getClassCount(ytrain), K=10, wd=0)
    nne = NeuralNetworkEfficient(len(Xtrain[0]), default_h, utils.getClassCount(ytrain), K=10, wd=0)
    nne._w1 = nn._w1 # trick pour que l'aleatoire soit egale
    nne._w2 = nn._w2
    nn.train(Xtrain,ytrain,1)
    nne.train(Xtrain,ytrain,1)
    utils.compareNN(nn,nne,10)
开发者ID:PierreGe,项目名称:neural-network,代码行数:25,代码来源:main.py


示例19: train

def train(method, learningRate, momentum, numEpochs, output, samples, layers=None, minibatchsize=None):
    trainImages, trainOutput, trainNumbers = loadData('training', samples)
    nn = NeuralNetwork(layerCount=len(layers),
                       layerSize=np.array(layers),
                       actFunctions=np.array([1, 1]))

    trainmethod = {
        TRAININGMETHODS[0]: nn.trainBatch,
        TRAININGMETHODS[1]: nn.trainStochastic
    }
    errors = trainmethod[method](
        trainImages, trainOutput, learningRate=learningRate, momentum=momentum, numEpochs=numEpochs)
    # Error did happen, we just return, error message would be printed by the
    # train method
    if not errors or len(errors) == 0:
        return

    # print 'Training done, errors:', errors
    print 'Saving output to', output
    nn.save(output)
    print 'Testing...'
    test(nn)
开发者ID:crysxd,项目名称:Parallel-Computing-and-Algorithms-X033537-Project,代码行数:22,代码来源:nnet.py


示例20: setUp

    def setUp(self):
        self.nn = NeuralNetwork(['a', 'b'], 2)

        self.nn.hidden_neurons[0].input_weights['a'] = 1.0
        self.nn.hidden_neurons[0].input_weights['b'] = 1.0
        self.nn.hidden_neurons[0].bias = 0.0

        self.nn.hidden_neurons[1].input_weights['a'] = 1.0
        self.nn.hidden_neurons[1].input_weights['b'] = 1.0
        self.nn.hidden_neurons[1].bias = 0.0

        self.nn.final_neuron.input_weights[0] = -1
        self.nn.final_neuron.input_weights[1] = 1
        self.nn.final_neuron.bias = 0.0
开发者ID:maeberli,项目名称:ClassificationPosts,代码行数:14,代码来源:NeuralNetworkTestcase.py



注:本文中的NeuralNetwork.NeuralNetwork类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python NewTraceFac.NTRC类代码示例发布时间:2022-05-24
下一篇:
Python Network.Network类代码示例发布时间:2022-05-24
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap