• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

C# Basic.BasicMLData类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了C#中Encog.ML.Data.Basic.BasicMLData的典型用法代码示例。如果您正苦于以下问题:C# BasicMLData类的具体用法?C# BasicMLData怎么用?C# BasicMLData使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



BasicMLData类属于Encog.ML.Data.Basic命名空间,在下文中一共展示了BasicMLData类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C#代码示例。

示例1: tryMove

        private double tryMove(int[,] board, Move move)
        {
            var input = new BasicMLData (Board.SIZE * Board.SIZE);
            int index = 0;

            for (int x = 0; x < Board.SIZE; x++) {
                for (int y = 0; y < Board.SIZE; y++) {
                    if (board [x, y] == aXon.TicTacToe.Game.TicTacToe.NOUGHTS) {
                        input [index] = -1;
                    } else if (board [x, y] == aXon.TicTacToe.Game.TicTacToe.CROSSES) {
                        input [index] = 1;
                    } else if (board [x, y] == aXon.TicTacToe.Game.TicTacToe.EMPTY) {
                        input [index] = 0;
                    }

                    if ((x == move.x) && (y == move.y)) {
                        input [index] = -1;
                    }

                    index++;
                }
            }
            //var input = new BasicMLData(Board.SIZE*Board.SIZE);

            IMLData output = this.network.Compute (input);
            return output [0];
        }
开发者ID:tmassey,项目名称:mtos,代码行数:27,代码来源:PlayerNeural.cs


示例2: TestSOM

        public void TestSOM()
        {
            // create the training set
            IMLDataSet training = new BasicMLDataSet(
                SOMInput, null);

            // Create the neural network.
            var network = new SOMNetwork(4, 2) {Weights = new Matrix(MatrixArray)};

            var train = new BasicTrainSOM(network, 0.4,
                                          training, new NeighborhoodSingle()) {ForceWinner = true};
            int iteration = 0;

            for (iteration = 0; iteration <= 100; iteration++)
            {
                train.Iteration();
            }

            IMLData data1 = new BasicMLData(
                SOMInput[0]);
            IMLData data2 = new BasicMLData(
                SOMInput[1]);

            int result1 = network.Classify(data1);
            int result2 = network.Classify(data2);

            Assert.IsTrue(result1 != result2);
        }
开发者ID:CreativelyMe,项目名称:encog-dotnet-core,代码行数:28,代码来源:TestCompetitive.cs


示例3: ScorePilot

        public int ScorePilot()
        {
            var sim = new LanderSimulator();
            while (sim.Flying)
            {
                IMLData input = new BasicMLData(3);
                input[0] = _fuelStats.Normalize(sim.Fuel);
                input[1] = _altitudeStats.Normalize(sim.Altitude);
                input[2] = _velocityStats.Normalize(sim.Velocity);
                IMLData output = _network.Compute(input);
                double value = output[0];

                bool thrust;

                if (value > 0)
                {
                    thrust = true;
                    if (_track)
                        Console.WriteLine(@"THRUST");
                }
                else
                    thrust = false;

                sim.Turn(thrust);
                if (_track)
                    Console.WriteLine(sim.Telemetry());
            }
            return (sim.Score);
        }
开发者ID:firestrand,项目名称:encog-dotnet-core,代码行数:29,代码来源:NeuralPilot.cs


示例4: JacobianChainRule

 public JacobianChainRule(BasicNetwork network, IMLDataSet indexableTraining)
 {
     BasicMLData data;
     BasicMLData data2;
     if (0 == 0)
     {
         goto Label_0055;
     }
     Label_0009:
     this._x61830ac74d65acc3 = new BasicMLDataPair(data, data2);
     return;
     Label_0055:
     this._xb12276308f0fa6d9 = indexableTraining;
     if (0 == 0)
     {
     }
     this._x87a7fc6a72741c2e = network;
     this._xabb126b401219ba2 = network.Structure.CalculateSize();
     this._x530ae94d583e0ea1 = (int) this._xb12276308f0fa6d9.Count;
     this._xbdeab667c25bbc32 = EngineArray.AllocateDouble2D(this._x530ae94d583e0ea1, this._xabb126b401219ba2);
     this._xc8a462f994253347 = new double[this._x530ae94d583e0ea1];
     data = new BasicMLData(this._xb12276308f0fa6d9.InputSize);
     data2 = new BasicMLData(this._xb12276308f0fa6d9.IdealSize);
     if (-2147483648 != 0)
     {
         goto Label_0009;
     }
     goto Label_0055;
 }
开发者ID:neismit,项目名称:emds,代码行数:29,代码来源:JacobianChainRule.cs


示例5: LoadCSVTOMemory

        /// <summary>
        /// Load a CSV file into a memory dataset.  
        /// </summary>
        ///
        /// <param name="format">The CSV format to use.</param>
        /// <param name="filename">The filename to load.</param>
        /// <param name="headers">True if there is a header line.</param>
        /// <param name="inputSize">The input size.  Input always comes first in a file.</param>
        /// <param name="idealSize">The ideal size, 0 for unsupervised.</param>
        /// <returns>A NeuralDataSet that holds the contents of the CSV file.</returns>
        public static IMLDataSet LoadCSVTOMemory(CSVFormat format, String filename,
                                                bool headers, int inputSize, int idealSize)
        {
            var result = new BasicMLDataSet();
            var csv = new ReadCSV(filename, headers, format);
            while (csv.Next())
            {
                BasicMLData ideal = null;
                int index = 0;

                var input = new BasicMLData(inputSize);
                for (int i = 0; i < inputSize; i++)
                {
                    double d = csv.GetDouble(index++);
                    input[i] = d;
                }

                if (idealSize > 0)
                {
                    ideal = new BasicMLData(idealSize);
                    for (int i = 0; i < idealSize; i++)
                    {
                        double d = csv.GetDouble(index++);
                        ideal[i] = d;
                    }
                }

                IMLDataPair pair = new BasicMLDataPair(input, ideal);
                result.Add(pair);
            }

            return result;
        }
开发者ID:jongh0,项目名称:MTree,代码行数:43,代码来源:TrainingSetUtil.cs


示例6: LoadCSVToDataSet

        public static IMLDataSet LoadCSVToDataSet(FileInfo fileInfo, int inputCount, int outputCount, bool randomize = true, bool headers = true)
        {
            BasicMLDataSet result = new BasicMLDataSet();
            CultureInfo CSVformat = new CultureInfo("en");

            using (TextFieldParser parser = new TextFieldParser(fileInfo.FullName))
            {
                parser.TextFieldType = FieldType.Delimited;
                parser.SetDelimiters(",");
                if (headers)
                    parser.ReadFields();
                while (!parser.EndOfData)
                {
                    //Processing row
                    string[] fields = parser.ReadFields();
                    var input = new BasicMLData(inputCount);
                    for (int i = 0; i < inputCount; i++)
                        input[i] = double.Parse(fields[i], CSVformat);
                    var ideal = new BasicMLData(outputCount);
                    for (int i = 0; i < outputCount; i++)
                        ideal[i] = double.Parse(fields[i + inputCount], CSVformat);
                    result.Add(input, ideal);
                }
            }
            var rand = new Random(DateTime.Now.Millisecond);

            return (randomize ? new BasicMLDataSet(result.OrderBy(r => rand.Next()).ToList()) : new BasicMLDataSet(result));
        }
开发者ID:JGrzybowski,项目名称:NeuralNetworksSmallProject,代码行数:28,代码来源:CSVHelper.cs


示例7: Generate

        /// <summary>
        /// Generate a random training set. 
        /// </summary>
        /// <param name="seed">The seed value to use, the same seed value will always produce
        /// the same results.</param>
        /// <param name="count">How many training items to generate.</param>
        /// <param name="inputCount">How many input numbers.</param>
        /// <param name="idealCount">How many ideal numbers.</param>
        /// <param name="min">The minimum random number.</param>
        /// <param name="max">The maximum random number.</param>
        /// <returns>The random training set.</returns>
        public static BasicMLDataSet Generate(long seed,
            int count, int inputCount,
            int idealCount, double min, double max)
        {
            var rand =
                new LinearCongruentialGenerator(seed);

            var result = new BasicMLDataSet();
            for (int i = 0; i < count; i++)
            {
                var inputData = new BasicMLData(inputCount);

                for (int j = 0; j < inputCount; j++)
                {
                    inputData[j] = rand.Range(min, max);
                }

                var idealData = new BasicMLData(idealCount);

                for (int j = 0; j < idealCount; j++)
                {
                    idealData[j] = rand.Range(min, max);
                }

                var pair = new BasicMLDataPair(inputData,
                                               idealData);
                result.Add(pair);
            }
            return result;
        }
开发者ID:kedrzu,项目名称:encog-dotnet-core,代码行数:41,代码来源:RandomTrainingFactory.cs


示例8: CalculateScore

 /// <inheritdoc />
 public double CalculateScore(IMLMethod genome)
 {
     var prg = (EncogProgram) genome;
     var pop = (PrgPopulation) prg.Population;
     IMLData inputData = new BasicMLData(pop.Context.DefinedVariables.Count);
     prg.Compute(inputData);
     return 0;
 }
开发者ID:benw408701,项目名称:MLHCTransactionPredictor,代码行数:9,代码来源:ZeroEvalScoreFunction.cs


示例9: TestBufferData

        public void TestBufferData()
        {
            File.Delete(Filename);
            var set = new BufferedMLDataSet(Filename);
            set.BeginLoad(2, 1);
            for (int i = 0; i < XOR.XORInput.Length; i++)
            {
                var input = new BasicMLData(XOR.XORInput[i]);
                var ideal = new BasicMLData(XOR.XORIdeal[i]);
                set.Add(input, ideal);
            }
            set.EndLoad();

            XOR.TestXORDataSet(set);
        }
开发者ID:kedrzu,项目名称:encog-dotnet-core,代码行数:15,代码来源:TestBufferedNeuralDataSet.cs


示例10: CreateNoisyXORDataSet

 public static IMLDataSet CreateNoisyXORDataSet(int count)
 {
     var result = new BasicMLDataSet();
     for (int i = 0; i < count; i++)
     {
         for (int j = 0; j < 4; j++)
         {
             var inputData = new BasicMLData(XORInput[j]);
             var idealData = new BasicMLData(XORIdeal[j]);
             var pair = new BasicMLDataPair(inputData, idealData);
             inputData[0] = inputData[0] + RangeRandomizer.Randomize(-0.1, 0.1);
             inputData[1] = inputData[1] + RangeRandomizer.Randomize(-0.1, 0.1);
             result.Add(pair);
         }
     }
     return result;
 }
开发者ID:jongh0,项目名称:MTree,代码行数:17,代码来源:XOR.cs


示例11: Query

        public IntPair Query(int resolution)
        {
            // first, create the input data
            int index = 0;
            BasicMLData inputData = new BasicMLData(resolution * resolution);
            double pixelSize = 2.0 / resolution;
            double orig = -1.0 + (pixelSize / 2.0);

            double yReal = orig;
            for (int y = 0; y < resolution; y++, yReal += pixelSize)
            {
                double xReal = orig;
                for (int x = 0; x < resolution; x++, xReal += pixelSize)
                {
                    inputData.Data[index] = this.test.GetPixel(xReal, yReal);
                    index++;
                }
            }

            // second, query the network
            output = ((NEATNetwork)this.phenotype).Compute(inputData);

            // finally, process the output
            minActivation = Double.PositiveInfinity;
            maxActivation = Double.NegativeInfinity;
            int maxIndex = 0;

            for (int i = 0; i < output.Count; i++)
            {
                double d = output[i];

                if (d > maxActivation)
                {
                    maxActivation = d;
                    maxIndex = i;
                }
                else if (d < minActivation)
                {
                    minActivation = d;
                }
            }

            int yy = maxIndex / resolution;
            int xx = maxIndex - (yy * resolution);
            return new IntPair(xx, yy);
        }
开发者ID:legendvijay,项目名称:aifh,代码行数:46,代码来源:TrialEvaluation.cs


示例12: GenerateSingleDataRange

        public static IMLDataSet GenerateSingleDataRange(EncogFunction task, double start, double stop, double step)
        {
            BasicMLDataSet result = new BasicMLDataSet();
            double current = start;

            while (current <= stop)
            {
                BasicMLData input = new BasicMLData(1);
                input[0] = current;
                BasicMLData ideal = new BasicMLData(1);
                ideal[0] = task(current);
                result.Add(input, ideal);
                current += step;
            }

            return result;
        }
开发者ID:benw408701,项目名称:MLHCTransactionPredictor,代码行数:17,代码来源:GenerationUtil.cs


示例13: ScorePilot

        public int ScorePilot()
        {
            while (sim.Traveling)
            {
                var input = new BasicMLData(2);

                input[0] = sim.DistanceToDestination;
                input[1] = _hStats.Normalize(sim.Heading);

                IMLData output = _network.Compute(input);
                double f = output[0];
                double l = output[1];
                double r = output[2];
                double rev = output[3];

                var dirs = new Dictionary<CommandDirection, double>
                    {
                        {CommandDirection.MoveForward, f},
                        {CommandDirection.TurnLeft, l},
                        {CommandDirection.TurnRight, r},
                        {CommandDirection.MoveInReverse, rev}

                    };
                KeyValuePair<CommandDirection, double> d = dirs.First(v => v.Value == 1.0);

                CommandDirection thrust = d.Key;
                sim.Turn(thrust);

                lock (RobotContol.ConsoleLock)
                {

                    if (_track)
                    {
                        sim.Telemetry();
                        switch (thrust)
                        {
                            default:
                                Thread.Sleep(50);
                                break;
                        }
                    }
                }
            }
            return (sim.Score);
        }
开发者ID:tmassey,项目名称:mtos,代码行数:45,代码来源:NeuralRobot.cs


示例14: LevenbergMarquardtTraining

 public LevenbergMarquardtTraining(BasicNetwork network, IMLDataSet training)
     : base(TrainingImplementationType.Iterative)
 {
     if (2 != 0)
     {
         ValidateNetwork.ValidateMethodToData(network, training);
         if (network.OutputCount != 1)
         {
             throw new TrainingError("Levenberg Marquardt requires an output layer with a single neuron.");
         }
         this.Training = training;
         goto Label_0134;
     }
     Label_00A8:
     this._xdadd8f92d75a3aba = new double[this._xe2982b936ae423cd];
     this._x878c4eb3cef19a5a = new double[this._xe2982b936ae423cd];
     this._x3cb63876dda4b74a = new double[this._xe2982b936ae423cd];
     if (0xff == 0)
     {
         return;
     }
     BasicMLData input = new BasicMLData(this._xb12276308f0fa6d9.InputSize);
     BasicMLData ideal = new BasicMLData(this._xb12276308f0fa6d9.IdealSize);
     this._x61830ac74d65acc3 = new BasicMLDataPair(input, ideal);
     if (-1 != 0)
     {
         return;
     }
     Label_0134:
     this._xb12276308f0fa6d9 = this.Training;
     this._x87a7fc6a72741c2e = network;
     this._x8557b7ee760663f3 = (int) this._xb12276308f0fa6d9.Count;
     this._xe2982b936ae423cd = this._x87a7fc6a72741c2e.Structure.CalculateSize();
     this._x05fb16197e552de6 = new Matrix(this._xe2982b936ae423cd, this._xe2982b936ae423cd);
     this._xc410e3804222557a = this._x05fb16197e552de6.Data;
     this._x6ad505c7ef981b0e = 0.0;
     this._xd7d571ecee49d1e4 = 1.0;
     this._x3271cefb1a159639 = 0.1;
     goto Label_00A8;
 }
开发者ID:neismit,项目名称:emds,代码行数:40,代码来源:LevenbergMarquardtTraining.cs


示例15: SOMColors

        public SOMColors()
        {
            InitializeComponent();

            network = CreateNetwork();
            gaussian = new NeighborhoodRBF(RBFEnum.Gaussian, WIDTH, HEIGHT);
            train = new BasicTrainSOM(network, 0.01, null, gaussian);

            train.ForceWinner = false;

            samples = new List<IMLData>();
            for (int i = 0; i < 15; i++)
            {
                IMLData data = new BasicMLData(3);
                data.Data[0] = RangeRandomizer.Randomize(-1, 1);
                data.Data[1] = RangeRandomizer.Randomize(-1, 1);
                data.Data[2] = RangeRandomizer.Randomize(-1, 1);
                samples.Add(data);
            }

            train.SetAutoDecay(100, 0.8, 0.003, 30, 5);
        }
开发者ID:fxmozart,项目名称:encog-dotnet-more-examples,代码行数:22,代码来源:SOMColors.cs


示例16: ProcessDoubleSerieIntoIMLDataset

 /// <summary>
 /// Processes the specified double serie into an IMLDataset.
 /// To use this method, you must provide a formated double array with the input data and the ideal data in another double array.
 /// The number of points in the input window makes the input array , and the predict window will create the array used in ideal.
 /// This method will use ALL the data inputs and ideals you have provided.
 /// </summary>
 /// <param name="datainput">The datainput.</param>
 /// <param name="ideals">The ideals.</param>
 /// <param name="_inputWindow">The _input window.</param>
 /// <param name="_predictWindow">The _predict window.</param>
 /// <returns></returns>
 public static IMLDataSet ProcessDoubleSerieIntoIMLDataset(List<double> datainput,List<double>ideals, int _inputWindow, int _predictWindow)
 {
     var result = new BasicMLDataSet();
     //int count = 0;
     ////lets check if there is a modulo , if so we move forward in the List of doubles in inputs.This is just a check
     ////as the data of inputs should be able to fill without having .
     //while (datainput.Count % _inputWindow !=0)
     //{
     //    count++;
     //}
     var inputData = new BasicMLData(_inputWindow);
     var idealData = new BasicMLData(_predictWindow);
     foreach (double d in datainput)
     {
         // handle input window
         for (int j = 0; j < _inputWindow; j++)
         {
             inputData[j] = d;
         }
     }
     foreach (double ideal in ideals)
     {
          // handle predict window
         for (int j = 0; j < _predictWindow; j++)
         {
             idealData[j] =ideal;
         }
     }
     var pair = new BasicMLDataPair(inputData, idealData);
     result.Add(pair);
     return result;
 }
开发者ID:Romiko,项目名称:encog-dotnet-core,代码行数:43,代码来源:TrainerHelper.cs


示例17: ProcessNetwork

        private void ProcessNetwork()
        {
            app.WriteLine("Downsampling images...");

            foreach (ImagePair pair in imageList)
            {
                var ideal = new BasicMLData(outputCount);
                int idx = pair.Identity;
                for (int i = 0; i < outputCount; i++)
                {
                    if (i == idx)
                    {
                        ideal[i] = 1;
                    }
                    else
                    {
                        ideal[i] = -1;
                    }
                }

                try
                {
                    var img = new Bitmap(pair.File);
                    var data = new ImageMLData(img);
                    training.Add(data, ideal);
                }
                catch (Exception e)
                {
                    app.WriteLine("Error loading: " + pair.File
                                  + ": " + e.Message);
                }
            }

            String strHidden1 = GetArg("hidden1");
            String strHidden2 = GetArg("hidden2");

            if (training.Count == 0)
            {
                app.WriteLine("No images to create network for.");
                return;
            }

            training.Downsample(downsampleHeight, downsampleWidth);

            int hidden1 = int.Parse(strHidden1);
            int hidden2 = int.Parse(strHidden2);

            network = EncogUtility.SimpleFeedForward(training
                                                         .InputSize, hidden1, hidden2,
                                                     training.IdealSize, true);
            app.WriteLine("Created network: " + network);
        }
开发者ID:johannsutherland,项目名称:encog-dotnet-core,代码行数:52,代码来源:ImageNeuralNetwork.cs


示例18: Process

        /// <summary>
        /// Process the file.
        /// </summary>
        ///
        /// <param name="outputFile">The output file.</param>
        /// <param name="method">The method to use.</param>
        public void Process(FileInfo outputFile, IMLRegression method)
        {
            var csv = new ReadCSV(InputFilename.ToString(),
                                  ExpectInputHeaders, Format);

            if (method.InputCount > _inputCount)
            {
                throw new AnalystError("This machine learning method has "
                                       + method.InputCount
                                       + " inputs, however, the data has " + _inputCount
                                       + " inputs.");
            }

            var input = new BasicMLData(method.InputCount);

            StreamWriter tw = AnalystPrepareOutputFile(outputFile);

            ResetStatus();
            while (csv.Next())
            {
                UpdateStatus(false);
                var row = new LoadedRow(csv, _idealCount);

                int dataIndex = 0;
                // load the input data
                for (int i = 0; i < _inputCount; i++)
                {
                    String str = row.Data[i];
                    double d = Format.Parse(str);
                    input[i] = d;
                    dataIndex++;
                }

                // do we need to skip the ideal values?
                dataIndex += _idealCount;

                // compute the result
                IMLData output = method.Compute(input);

                // display the computed result
                for (int i = 0; i < _outputCount; i++)
                {
                    double d = output[i];
                    row.Data[dataIndex++] = Format.Format(d, Precision);
                }

                WriteRow(tw, row);
            }
            ReportDone(false);
            tw.Close();
            csv.Close();
        }
开发者ID:fxmozart,项目名称:encog-dotnet-core,代码行数:58,代码来源:EvaluateRawCSV.cs


示例19: Test

        public void Test(CPNNetwork network, String[][] pattern, double[][] input)
        {
            for (int i = 0; i < pattern.Length; i++)
            {
                IMLData inputData = new BasicMLData(input[i]);
                IMLData outputData = network.Compute(inputData);
                double angle = DetermineAngle(outputData);

                // display image
                for (int j = 0; j < HEIGHT; j++)
                {
                    if (j == HEIGHT - 1)
                        app.WriteLine("[" + pattern[i][j] + "] -> " + ((int) angle) + " deg");
                    else
                        app.WriteLine("[" + pattern[i][j] + "]");
                }

                Console.WriteLine();
            }
        }
开发者ID:jongh0,项目名称:MTree,代码行数:20,代码来源:RocketCPN.cs


示例20: Process

        /// <summary>
        /// Process the file.
        /// </summary>
        ///
        /// <param name="outputFile">The output file.</param>
        /// <param name="method">THe method to use.</param>
        public void Process(FileInfo outputFile, IMLMethod method)
        {
            var csv = new ReadCSV(InputFilename.ToString(),
                                  ExpectInputHeaders, Format);

            IMLData output;

            int outputLength = _analyst.DetermineTotalInputFieldCount();

            StreamWriter tw = PrepareOutputFile(outputFile);

            ResetStatus();
            while (csv.Next())
            {
                UpdateStatus(false);
                var row = new LoadedRow(csv, _outputColumns);

                double[] inputArray = AnalystNormalizeCSV.ExtractFields(_analyst,
                                                                        _analystHeaders, csv, outputLength, true);
                if (_series.TotalDepth > 1)
                {
                    inputArray = _series.Process(inputArray);
                }

                if (inputArray != null)
                {
                    IMLData input = new BasicMLData(inputArray);

                    // evaluation data
                    if ((method is IMLClassification)
                        && !(method is IMLRegression))
                    {
                        // classification only?
                        output = new BasicMLData(1);
                        output[0] =
                            ((IMLClassification) method).Classify(input);
                    }
                    else
                    {
                        // regression
                        output = ((IMLRegression) method).Compute(input);
                    }

                    // skip file data
                    int index = _fileColumns;
                    int outputIndex = 0;


                    // display output
                    foreach (AnalystField field  in  _analyst.Script.Normalize.NormalizedFields)
                    {
                        if (_analystHeaders.Find(field.Name) != -1)
                        {
                            if (field.Output)
                            {
                                if (field.Classify)
                                {
                                    // classification
                                    ClassItem cls = field.DetermineClass(
                                        outputIndex, output.Data);
                                    outputIndex += field.ColumnsNeeded;
                                    if (cls == null)
                                    {
                                        row.Data[index++] = "?Unknown?";
                                    }
                                    else
                                    {
                                        row.Data[index++] = cls.Name;
                                    }
                                }
                                else
                                {
                                    // regression
                                    double n = output[outputIndex++];
                                    n = field.DeNormalize(n);
                                    row.Data[index++] = Format
                                        .Format(n, Precision);
                                }
                            }
                        }
                    }
                }

                WriteRow(tw, row);
            }
            ReportDone(false);
            tw.Close();
            csv.Close();
        }
开发者ID:JDFagan,项目名称:encog-dotnet-core,代码行数:95,代码来源:AnalystEvaluateCSV.cs



注:本文中的Encog.ML.Data.Basic.BasicMLData类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
C# Specific.BiPolarMLData类代码示例发布时间:2022-05-24
下一篇:
C# IO.BigEndianWriter类代码示例发布时间:2022-05-24
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap