• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

C# mlpreport类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了C#中mlpreport的典型用法代码示例。如果您正苦于以下问题:C# mlpreport类的具体用法?C# mlpreport怎么用?C# mlpreport使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



mlpreport类属于命名空间,在下文中一共展示了mlpreport类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C#代码示例。

示例1: _pexec_mlptrainensemblees

 /*************************************************************************
 Single-threaded stub. HPC ALGLIB replaces it by multithreaded code.
 *************************************************************************/
 public static void _pexec_mlptrainensemblees(mlptrainer s,
     mlpe.mlpensemble ensemble,
     int nrestarts,
     mlpreport rep)
 {
     mlptrainensemblees(s,ensemble,nrestarts,rep);
 }
开发者ID:Kerbas-ad-astra,项目名称:MechJeb2,代码行数:10,代码来源:dataanalysis.cs


示例2: mlpetraines

        /*************************************************************************
        Training neural networks ensemble using early stopping.

        INPUT PARAMETERS:
            Ensemble    -   model with initialized geometry
            XY          -   training set
            NPoints     -   training set size
            Decay       -   weight decay coefficient, >=0.001
            Restarts    -   restarts, >0.

        OUTPUT PARAMETERS:
            Ensemble    -   trained model
            Info        -   return code:
                            * -2, if there is a point with class number
                                  outside of [0..NClasses-1].
                            * -1, if incorrect parameters was passed
                                  (NPoints<0, Restarts<1).
                            *  6, if task has been solved.
            Rep         -   training report.
            OOBErrors   -   out-of-bag generalization error estimate

          -- ALGLIB --
             Copyright 10.03.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void mlpetraines(mlpe.mlpensemble ensemble,
            double[,] xy,
            int npoints,
            double decay,
            int restarts,
            ref int info,
            mlpreport rep)
        {
            int i = 0;
            int k = 0;
            int ccount = 0;
            int pcount = 0;
            double[,] trnxy = new double[0,0];
            double[,] valxy = new double[0,0];
            int trnsize = 0;
            int valsize = 0;
            int tmpinfo = 0;
            mlpreport tmprep = new mlpreport();
            mlpbase.modelerrors moderr = new mlpbase.modelerrors();
            int nin = 0;
            int nout = 0;
            int wcount = 0;
            int i_ = 0;
            int i1_ = 0;

            info = 0;

            nin = mlpbase.mlpgetinputscount(ensemble.network);
            nout = mlpbase.mlpgetoutputscount(ensemble.network);
            wcount = mlpbase.mlpgetweightscount(ensemble.network);
            if( (npoints<2 || restarts<1) || (double)(decay)<(double)(0) )
            {
                info = -1;
                return;
            }
            if( mlpbase.mlpissoftmax(ensemble.network) )
            {
                for(i=0; i<=npoints-1; i++)
                {
                    if( (int)Math.Round(xy[i,nin])<0 || (int)Math.Round(xy[i,nin])>=nout )
                    {
                        info = -2;
                        return;
                    }
                }
            }
            info = 6;
            
            //
            // allocate
            //
            if( mlpbase.mlpissoftmax(ensemble.network) )
            {
                ccount = nin+1;
                pcount = nin;
            }
            else
            {
                ccount = nin+nout;
                pcount = nin+nout;
            }
            trnxy = new double[npoints, ccount];
            valxy = new double[npoints, ccount];
            rep.ngrad = 0;
            rep.nhess = 0;
            rep.ncholesky = 0;
            
            //
            // train networks
            //
            for(k=0; k<=ensemble.ensemblesize-1; k++)
            {
                
                //
                // Split set
                //
//.........这里部分代码省略.........
开发者ID:Kerbas-ad-astra,项目名称:MechJeb2,代码行数:101,代码来源:dataanalysis.cs


示例3: restarts

        /*************************************************************************
        This function trains neural network ensemble passed to this function using
        current dataset and early stopping training algorithm. Each early stopping
        round performs NRestarts  random  restarts  (thus,  EnsembleSize*NRestarts
        training rounds is performed in total).

        FOR USERS OF COMMERCIAL EDITION:

          ! Commercial version of ALGLIB includes two  important  improvements  of
          ! this function:
          ! * multicore support (C++ and C# computational cores)
          ! * SSE support (C++ computational core)
          !
          ! Second improvement gives constant  speedup (2-3X).  First  improvement
          ! gives  close-to-linear  speedup  on   multicore   systems.   Following
          ! operations can be executed in parallel:
          ! * EnsembleSize  training  sessions  performed  for  each  of  ensemble
          !   members (always parallelized)
          ! * NRestarts  training  sessions  performed  within  each  of  training
          !   sessions (if NRestarts>1)
          ! * gradient calculation over large dataset (if dataset is large enough)
          !
          ! In order to use multicore features you have to:
          ! * use commercial version of ALGLIB
          ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
          !   multicore code will be used (for multicore support)
          !
          ! In order to use SSE features you have to:
          ! * use commercial version of ALGLIB on Intel processors
          ! * use C++ computational core
          !
          ! This note is given for users of commercial edition; if  you  use  GPL
          ! edition, you still will be able to call smp-version of this function,
          ! but all computations will be done serially.
          !
          ! We recommend you to carefully read ALGLIB Reference  Manual,  section
          ! called 'SMP support', before using parallel version of this function.

        INPUT PARAMETERS:
            S           -   trainer object;
            Ensemble    -   neural network ensemble. It must have same  number  of
                            inputs and outputs/classes  as  was  specified  during
                            creation of the trainer object.
            NRestarts   -   number of restarts, >=0:
                            * NRestarts>0 means that specified  number  of  random
                              restarts are performed during each ES round;
                            * NRestarts=0 is silently replaced by 1.

        OUTPUT PARAMETERS:
            Ensemble    -   trained ensemble;
            Rep         -   it contains all type of errors.
            
        NOTE: this training method uses BOTH early stopping and weight decay!  So,
              you should select weight decay before starting training just as  you
              select it before training "conventional" networks.

        NOTE: when no dataset was specified with MLPSetDataset/SetSparseDataset(),
              or  single-point  dataset  was  passed,  ensemble  is filled by zero
              values.

        NOTE: this method uses sum-of-squares error function for training.

          -- ALGLIB --
             Copyright 22.08.2012 by Bochkanov Sergey
        *************************************************************************/
        public static void mlptrainensemblees(mlptrainer s,
            mlpe.mlpensemble ensemble,
            int nrestarts,
            mlpreport rep)
        {
            int nin = 0;
            int nout = 0;
            int ntype = 0;
            int ttype = 0;
            alglib.smp.shared_pool esessions = new alglib.smp.shared_pool();
            apserv.sinteger sgrad = new apserv.sinteger();
            mlpbase.modelerrors tmprep = new mlpbase.modelerrors();

            alglib.ap.assert(s.npoints>=0, "MLPTrainEnsembleES: parameter S is not initialized or is spoiled(S.NPoints<0)");
            if( !mlpe.mlpeissoftmax(ensemble) )
            {
                ntype = 0;
            }
            else
            {
                ntype = 1;
            }
            if( s.rcpar )
            {
                ttype = 0;
            }
            else
            {
                ttype = 1;
            }
            alglib.ap.assert(ntype==ttype, "MLPTrainEnsembleES: internal error - type of input network is not similar to network type in trainer object");
            nin = mlpbase.mlpgetinputscount(ensemble.network);
            alglib.ap.assert(s.nin==nin, "MLPTrainEnsembleES: number of inputs in trainer is not equal to number of inputs in ensemble network");
            nout = mlpbase.mlpgetoutputscount(ensemble.network);
            alglib.ap.assert(s.nout==nout, "MLPTrainEnsembleES: number of outputs in trainer is not equal to number of outputs in ensemble network");
//.........这里部分代码省略.........
开发者ID:Kerbas-ad-astra,项目名称:MechJeb2,代码行数:101,代码来源:dataanalysis.cs


示例4: mlpkfoldcvlm

        /*************************************************************************
        Cross-validation estimate of generalization error.

        Base algorithm - Levenberg-Marquardt.

        INPUT PARAMETERS:
            Network     -   neural network with initialized geometry.   Network is
                            not changed during cross-validation -  it is used only
                            as a representative of its architecture.
            XY          -   training set.
            SSize       -   training set size
            Decay       -   weight  decay, same as in MLPTrainLBFGS
            Restarts    -   number of restarts, >0.
                            restarts are counted for each partition separately, so
                            total number of restarts will be Restarts*FoldsCount.
            FoldsCount  -   number of folds in k-fold cross-validation,
                            2<=FoldsCount<=SSize.
                            recommended value: 10.

        OUTPUT PARAMETERS:
            Info        -   return code, same as in MLPTrainLBFGS
            Rep         -   report, same as in MLPTrainLM/MLPTrainLBFGS
            CVRep       -   generalization error estimates

          -- ALGLIB --
             Copyright 09.12.2007 by Bochkanov Sergey
        *************************************************************************/
        public static void mlpkfoldcvlm(mlpbase.multilayerperceptron network,
            double[,] xy,
            int npoints,
            double decay,
            int restarts,
            int foldscount,
            ref int info,
            mlpreport rep,
            mlpcvreport cvrep)
        {
            info = 0;

            mlpkfoldcvgeneral(network, xy, npoints, decay, restarts, foldscount, true, 0.0, 0, ref info, rep, cvrep);
        }
开发者ID:lgatto,项目名称:proteowizard,代码行数:41,代码来源:dataanalysis.cs


示例5: dataset

        /*************************************************************************
        This function trains neural network passed to this function, using current
        dataset (one which was passed to MLPSetDataset() or MLPSetSparseDataset())
        and current training settings. Training  from  NRestarts  random  starting
        positions is performed, best network is chosen.

        Training is performed using current training algorithm.

        INPUT PARAMETERS:
            S           -   trainer object
            Network     -   neural network. It must have same number of inputs and
                            output/classes as was specified during creation of the
                            trainer object.
            NRestarts   -   number of restarts, >=0:
                            * NRestarts>0 means that specified  number  of  random
                              restarts are performed, best network is chosen after
                              training
                            * NRestarts=0 means that current state of the  network
                              is used for training.

        OUTPUT PARAMETERS:
            Network     -   trained network

        NOTE: when no dataset was specified with MLPSetDataset/SetSparseDataset(),
              network  is  filled  by zero  values.  Same  behavior  for functions
              MLPStartTraining and MLPContinueTraining.

        NOTE: this method uses sum-of-squares error function for training.

          -- ALGLIB --
             Copyright 23.07.2012 by Bochkanov Sergey
        *************************************************************************/
        public static void mlptrainnetwork(mlptrainer s,
            mlpbase.multilayerperceptron network,
            int nrestarts,
            mlpreport rep)
        {
            int nin = 0;
            int nout = 0;
            int wcount = 0;
            int ntype = 0;
            int ttype = 0;

            alglib.ap.assert(s.npoints>=0, "MLPTrainNetwork: parameter S is not initialized or is spoiled(S.NPoints<0)");
            if( !mlpbase.mlpissoftmax(network) )
            {
                ntype = 0;
            }
            else
            {
                ntype = 1;
            }
            if( s.rcpar )
            {
                ttype = 0;
            }
            else
            {
                ttype = 1;
            }
            alglib.ap.assert(ntype==ttype, "MLPTrainNetwork: type of input network is not similar to network type in trainer object");
            mlpbase.mlpproperties(network, ref nin, ref nout, ref wcount);
            alglib.ap.assert(s.nin==nin, "MLPTrainNetwork: number of inputs in trainer is not equal to number of inputs in network");
            alglib.ap.assert(s.nout==nout, "MLPTrainNetwork: number of outputs in trainer is not equal to number of outputs in network");
            alglib.ap.assert(nrestarts>=0, "MLPTrainNetwork: NRestarts<0.");
            apserv.rvectorsetlengthatleast(ref s.wbest, wcount);
            apserv.rvectorsetlengthatleast(ref s.wfinal, wcount);
            
            //
            // Create LBFGS optimizer
            //
            minlbfgs.minlbfgscreate(wcount, Math.Min(wcount, s.lbfgsfactor), network.weights, s.tstate);
            minlbfgs.minlbfgssetcond(s.tstate, 0.0, 0.0, s.wstep, s.maxits);
            minlbfgs.minlbfgssetxrep(s.tstate, true);
            
            //
            // Create duplicate of the network
            //
            mlpbase.mlpcopy(network, s.tnetwork);
            
            //
            // Train
            //
            mlptrainnetworkx(s, network, s.tnetwork, s.tstate, nrestarts, s.subset, -1, s.subset, 0, s.wbest, s.wfinal, rep);
        }
开发者ID:thunder176,项目名称:HeuristicLab,代码行数:85,代码来源:dataanalysis.cs


示例6: problems

        /*************************************************************************
        Neural network training  using  modified  Levenberg-Marquardt  with  exact
        Hessian calculation and regularization. Subroutine trains  neural  network
        with restarts from random positions. Algorithm is well  suited  for  small
        and medium scale problems (hundreds of weights).

        INPUT PARAMETERS:
            Network     -   neural network with initialized geometry
            XY          -   training set
            NPoints     -   training set size
            Decay       -   weight decay constant, >=0.001
                            Decay term 'Decay*||Weights||^2' is added to error
                            function.
                            If you don't know what Decay to choose, use 0.001.
            Restarts    -   number of restarts from random position, >0.
                            If you don't know what Restarts to choose, use 2.

        OUTPUT PARAMETERS:
            Network     -   trained neural network.
            Info        -   return code:
                            * -9, if internal matrix inverse subroutine failed
                            * -2, if there is a point with class number
                                  outside of [0..NOut-1].
                            * -1, if wrong parameters specified
                                  (NPoints<0, Restarts<1).
                            *  2, if task has been solved.
            Rep         -   training report

          -- ALGLIB --
             Copyright 10.03.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void mlptrainlm(mlpbase.multilayerperceptron network,
            double[,] xy,
            int npoints,
            double decay,
            int restarts,
            ref int info,
            mlpreport rep)
        {
            int nin = 0;
            int nout = 0;
            int wcount = 0;
            double lmftol = 0;
            double lmsteptol = 0;
            int i = 0;
            int k = 0;
            double v = 0;
            double e = 0;
            double enew = 0;
            double xnorm2 = 0;
            double stepnorm = 0;
            double[] g = new double[0];
            double[] d = new double[0];
            double[,] h = new double[0,0];
            double[,] hmod = new double[0,0];
            double[,] z = new double[0,0];
            bool spd = new bool();
            double nu = 0;
            double lambdav = 0;
            double lambdaup = 0;
            double lambdadown = 0;
            minlbfgs.minlbfgsreport internalrep = new minlbfgs.minlbfgsreport();
            minlbfgs.minlbfgsstate state = new minlbfgs.minlbfgsstate();
            double[] x = new double[0];
            double[] y = new double[0];
            double[] wbase = new double[0];
            double[] wdir = new double[0];
            double[] wt = new double[0];
            double[] wx = new double[0];
            int pass = 0;
            double[] wbest = new double[0];
            double ebest = 0;
            int invinfo = 0;
            matinv.matinvreport invrep = new matinv.matinvreport();
            int solverinfo = 0;
            densesolver.densesolverreport solverrep = new densesolver.densesolverreport();
            int i_ = 0;

            info = 0;

            mlpbase.mlpproperties(network, ref nin, ref nout, ref wcount);
            lambdaup = 10;
            lambdadown = 0.3;
            lmftol = 0.001;
            lmsteptol = 0.001;
            
            //
            // Test for inputs
            //
            if( npoints<=0 || restarts<1 )
            {
                info = -1;
                return;
            }
            if( mlpbase.mlpissoftmax(network) )
            {
                for(i=0; i<=npoints-1; i++)
                {
                    if( (int)Math.Round(xy[i,nin])<0 || (int)Math.Round(xy[i,nin])>=nout )
                    {
//.........这里部分代码省略.........
开发者ID:lgatto,项目名称:proteowizard,代码行数:101,代码来源:dataanalysis.cs


示例7: stopping

        /*************************************************************************
        Neural network training using early stopping (base algorithm - L-BFGS with
        regularization).

        INPUT PARAMETERS:
            Network     -   neural network with initialized geometry
            TrnXY       -   training set
            TrnSize     -   training set size, TrnSize>0
            ValXY       -   validation set
            ValSize     -   validation set size, ValSize>0
            Decay       -   weight decay constant, >=0.001
                            Decay term 'Decay*||Weights||^2' is added to error
                            function.
                            If you don't know what Decay to choose, use 0.001.
            Restarts    -   number of restarts, either:
                            * strictly positive number - algorithm make specified
                              number of restarts from random position.
                            * -1, in which case algorithm makes exactly one run
                              from the initial state of the network (no randomization).
                            If you don't know what Restarts to choose, choose one
                            one the following:
                            * -1 (deterministic start)
                            * +1 (one random restart)
                            * +5 (moderate amount of random restarts)

        OUTPUT PARAMETERS:
            Network     -   trained neural network.
            Info        -   return code:
                            * -2, if there is a point with class number
                                  outside of [0..NOut-1].
                            * -1, if wrong parameters specified
                                  (NPoints<0, Restarts<1, ...).
                            *  2, task has been solved, stopping  criterion  met -
                                  sufficiently small step size.  Not expected  (we
                                  use  EARLY  stopping)  but  possible  and not an
                                  error.
                            *  6, task has been solved, stopping  criterion  met -
                                  increasing of validation set error.
            Rep         -   training report

        NOTE:

        Algorithm stops if validation set error increases for  a  long  enough  or
        step size is small enought  (there  are  task  where  validation  set  may
        decrease for eternity). In any case solution returned corresponds  to  the
        minimum of validation set error.

          -- ALGLIB --
             Copyright 10.03.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void mlptraines(mlpbase.multilayerperceptron network,
            double[,] trnxy,
            int trnsize,
            double[,] valxy,
            int valsize,
            double decay,
            int restarts,
            ref int info,
            mlpreport rep)
        {
            int i = 0;
            int pass = 0;
            int nin = 0;
            int nout = 0;
            int wcount = 0;
            double[] w = new double[0];
            double[] wbest = new double[0];
            double e = 0;
            double v = 0;
            double ebest = 0;
            double[] wfinal = new double[0];
            double efinal = 0;
            int itcnt = 0;
            int itbest = 0;
            minlbfgs.minlbfgsreport internalrep = new minlbfgs.minlbfgsreport();
            minlbfgs.minlbfgsstate state = new minlbfgs.minlbfgsstate();
            double wstep = 0;
            bool needrandomization = new bool();
            int i_ = 0;

            info = 0;

            wstep = 0.001;
            
            //
            // Test inputs, parse flags, read network geometry
            //
            if( ((trnsize<=0 || valsize<=0) || (restarts<1 && restarts!=-1)) || (double)(decay)<(double)(0) )
            {
                info = -1;
                return;
            }
            if( restarts==-1 )
            {
                needrandomization = false;
                restarts = 1;
            }
            else
            {
                needrandomization = true;
//.........这里部分代码省略.........
开发者ID:lgatto,项目名称:proteowizard,代码行数:101,代码来源:dataanalysis.cs


示例8: support

        /*************************************************************************
        This function estimates generalization error using cross-validation on the
        current dataset with current training settings.

        FOR USERS OF COMMERCIAL EDITION:

          ! Commercial version of ALGLIB includes two  important  improvements  of
          ! this function:
          ! * multicore support (C++ and C# computational cores)
          ! * SSE support (C++ computational core)
          !
          ! Second improvement gives constant  speedup (2-3X).  First  improvement
          ! gives  close-to-linear  speedup  on   multicore   systems.   Following
          ! operations can be executed in parallel:
          ! * FoldsCount cross-validation rounds (always)
          ! * NRestarts training sessions performed within each of
          !   cross-validation rounds (if NRestarts>1)
          ! * gradient calculation over large dataset (if dataset is large enough)
          !
          ! In order to use multicore features you have to:
          ! * use commercial version of ALGLIB
          ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
          !   multicore code will be used (for multicore support)
          !
          ! In order to use SSE features you have to:
          ! * use commercial version of ALGLIB on Intel processors
          ! * use C++ computational core
          !
          ! This note is given for users of commercial edition; if  you  use  GPL
          ! edition, you still will be able to call smp-version of this function,
          ! but all computations will be done serially.
          !
          ! We recommend you to carefully read ALGLIB Reference  Manual,  section
          ! called 'SMP support', before using parallel version of this function.

        INPUT PARAMETERS:
            S           -   trainer object
            Network     -   neural network. It must have same number of inputs and
                            output/classes as was specified during creation of the
                            trainer object. Network is not changed  during  cross-
                            validation and is not trained - it  is  used  only  as
                            representative of its architecture. I.e., we  estimate
                            generalization properties of  ARCHITECTURE,  not  some
                            specific network.
            NRestarts   -   number of restarts, >=0:
                            * NRestarts>0  means  that  for  each cross-validation
                              round   specified  number   of  random  restarts  is
                              performed,  with  best  network  being  chosen after
                              training.
                            * NRestarts=0 is same as NRestarts=1
            FoldsCount  -   number of folds in k-fold cross-validation:
                            * 2<=FoldsCount<=size of dataset
                            * recommended value: 10.
                            * values larger than dataset size will be silently
                              truncated down to dataset size

        OUTPUT PARAMETERS:
            Rep         -   structure which contains cross-validation estimates:
                            * Rep.RelCLSError - fraction of misclassified cases.
                            * Rep.AvgCE - acerage cross-entropy
                            * Rep.RMSError - root-mean-square error
                            * Rep.AvgError - average error
                            * Rep.AvgRelError - average relative error
                            
        NOTE: when no dataset was specified with MLPSetDataset/SetSparseDataset(),
              or subset with only one point  was  given,  zeros  are  returned  as
              estimates.

        NOTE: this method performs FoldsCount cross-validation  rounds,  each  one
              with NRestarts random starts.  Thus,  FoldsCount*NRestarts  networks
              are trained in total.

        NOTE: Rep.RelCLSError/Rep.AvgCE are zero on regression problems.

        NOTE: on classification problems Rep.RMSError/Rep.AvgError/Rep.AvgRelError
              contain errors in prediction of posterior probabilities.
                
          -- ALGLIB --
             Copyright 23.07.2012 by Bochkanov Sergey
        *************************************************************************/
        public static void mlpkfoldcv(mlptrainer s,
            mlpbase.multilayerperceptron network,
            int nrestarts,
            int foldscount,
            mlpreport rep)
        {
            alglib.smp.shared_pool pooldatacv = new alglib.smp.shared_pool();
            mlpparallelizationcv datacv = new mlpparallelizationcv();
            mlpparallelizationcv sdatacv = null;
            double[,] cvy = new double[0,0];
            int[] folds = new int[0];
            double[] buf = new double[0];
            double[] dy = new double[0];
            int nin = 0;
            int nout = 0;
            int wcount = 0;
            int rowsize = 0;
            int ntype = 0;
            int ttype = 0;
            int i = 0;
//.........这里部分代码省略.........
开发者ID:Kerbas-ad-astra,项目名称:MechJeb2,代码行数:101,代码来源:dataanalysis.cs


示例9: _pexec_mlpkfoldcv

 /*************************************************************************
 Single-threaded stub. HPC ALGLIB replaces it by multithreaded code.
 *************************************************************************/
 public static void _pexec_mlpkfoldcv(mlptrainer s,
     mlpbase.multilayerperceptron network,
     int nrestarts,
     int foldscount,
     mlpreport rep)
 {
     mlpkfoldcv(s,network,nrestarts,foldscount,rep);
 }
开发者ID:Kerbas-ad-astra,项目名称:MechJeb2,代码行数:11,代码来源:dataanalysis.cs


示例10: init

 public override void init()
 {
     trnsubset = new int[0];
     valsubset = new int[0];
     mlpsessions = new alglib.smp.shared_pool();
     mlprep = new mlpreport();
     network = new mlpbase.multilayerperceptron();
 }
开发者ID:Kerbas-ad-astra,项目名称:MechJeb2,代码行数:8,代码来源:dataanalysis.cs


示例11: make_copy

 public override alglib.apobject make_copy()
 {
     mlpreport _result = new mlpreport();
     _result.relclserror = relclserror;
     _result.avgce = avgce;
     _result.rmserror = rmserror;
     _result.avgerror = avgerror;
     _result.avgrelerror = avgrelerror;
     _result.ngrad = ngrad;
     _result.nhess = nhess;
     _result.ncholesky = ncholesky;
     return _result;
 }
开发者ID:Kerbas-ad-astra,项目名称:MechJeb2,代码行数:13,代码来源:dataanalysis.cs


示例12: restarts

        /*************************************************************************
        This function trains neural network ensemble passed to this function using
        current dataset and early stopping training algorithm. Each early stopping
        round performs NRestarts  random  restarts  (thus,  EnsembleSize*NRestarts
        training rounds is performed in total).

        INPUT PARAMETERS:
            S           -   trainer object;
            Ensemble    -   neural network ensemble. It must have same  number  of
                            inputs and outputs/classes  as  was  specified  during
                            creation of the trainer object.
            NRestarts   -   number of restarts, >=0:
                            * NRestarts>0 means that specified  number  of  random
                              restarts are performed during each ES round;
                            * NRestarts=0 is silently replaced by 1.

        OUTPUT PARAMETERS:
            Ensemble    -   trained ensemble;
            Rep         -   it contains all type of errors.

        NOTE: when no dataset was specified with MLPSetDataset/SetSparseDataset(),
              or  single-point  dataset  was  passed,  ensemble  is filled by zero
              values.

        NOTE: this method uses sum-of-squares error function for training.

          -- ALGLIB --
             Copyright 22.08.2012 by Bochkanov Sergey
        *************************************************************************/
        public static void mlptrainensemblees(mlptrainer s,
            mlpe.mlpensemble ensemble,
            int nrestarts,
            mlpreport rep)
        {
            int pcount = 0;
            mlpreport tmprep = new mlpreport();
            int nin = 0;
            int nout = 0;
            int wcount = 0;
            int ntype = 0;
            int ttype = 0;
            int i = 0;
            int k = 0;
            int i_ = 0;
            int i1_ = 0;

            alglib.ap.assert(s.npoints>=0, "MLPTrainEnsembleES: parameter S is not initialized or is spoiled(S.NPoints<0)");
            if( !mlpe.mlpeissoftmax(ensemble) )
            {
                ntype = 0;
            }
            else
            {
                ntype = 1;
            }
            if( s.rcpar )
            {
                ttype = 0;
            }
            else
            {
                ttype = 1;
            }
            alglib.ap.assert(ntype==ttype, "MLPTrainEnsembleES: internal error - type of input network is not similar to network type in trainer object");
            nin = mlpbase.mlpgetinputscount(ensemble.network);
            alglib.ap.assert(s.nin==nin, "MLPTrainEnsembleES: number of inputs in trainer is not equal to number of inputs in ensemble network");
            nout = mlpbase.mlpgetoutputscount(ensemble.network);
            alglib.ap.assert(s.nout==nout, "MLPTrainEnsembleES: number of outputs in trainer is not equal to number of outputs in ensemble network");
            alglib.ap.assert(nrestarts>=0, "MLPTrainEnsembleES: NRestarts<0.");
            wcount = mlpbase.mlpgetweightscount(ensemble.network);
            
            //
            // Initialize parameter Rep
            //
            rep.relclserror = 0;
            rep.avgce = 0;
            rep.rmserror = 0;
            rep.avgerror = 0;
            rep.avgrelerror = 0;
            rep.ngrad = 0;
            rep.nhess = 0;
            rep.ncholesky = 0;
            
            //
            // Allocate
            //
            if( mlpbase.mlpissoftmax(ensemble.network) )
            {
                pcount = nin;
            }
            else
            {
                pcount = nin+nout;
            }
            apserv.ivectorsetlengthatleast(ref s.subset, s.npoints);
            apserv.ivectorsetlengthatleast(ref s.valsubset, s.npoints);
            apserv.rvectorsetlengthatleast(ref s.wbest, wcount);
            apserv.rvectorsetlengthatleast(ref s.wfinal, wcount);
            
            //
//.........这里部分代码省略.........
开发者ID:thunder176,项目名称:HeuristicLab,代码行数:101,代码来源:dataanalysis.cs


示例13: dataset

        /*************************************************************************
        This function trains neural network passed to this function, using current
        dataset (one which was passed to MLPSetDataset() or MLPSetSparseDataset())
        and current training settings. Training  from  NRestarts  random  starting
        positions is performed, best network is chosen.

        This function is inteded to be used internally. It may be used in  several
        settings:
        * training with ValSubsetSize=0, corresponds  to  "normal"  training  with
          termination  criteria  based on S.MaxIts (steps count) and S.WStep (step
          size). Training sample is given by TrnSubset/TrnSubsetSize.
        * training with ValSubsetSize>0, corresponds to  early  stopping  training
          with additional MaxIts/WStep stopping criteria. Training sample is given
          by TrnSubset/TrnSubsetSize, validation sample  is  given  by  ValSubset/
          ValSubsetSize.

          -- ALGLIB --
             Copyright 13.08.2012 by Bochkanov Sergey
        *************************************************************************/
        private static void mlptrainnetworkx(mlptrainer s,
            int nrestarts,
            int algokind,
            int[] trnsubset,
            int trnsubsetsize,
            int[] valsubset,
            int valsubsetsize,
            mlpbase.multilayerperceptron network,
            mlpreport rep,
            bool isrootcall,
            alglib.smp.shared_pool sessions)
        {
            mlpbase.modelerrors modrep = new mlpbase.modelerrors();
            double eval = 0;
            double ebest = 0;
            int ngradbatch = 0;
            int nin = 0;
            int nout = 0;
            int wcount = 0;
            int pcount = 0;
            int itbest = 0;
            int itcnt = 0;
            int ntype = 0;
            int ttype = 0;
            bool rndstart = new bool();
            int i = 0;
            int nr0 = 0;
            int nr1 = 0;
            mlpreport rep0 = new mlpreport();
            mlpreport rep1 = new mlpreport();
            bool randomizenetwork = new bool();
            double bestrmserror = 0;
            smlptrnsession psession = null;
            int i_ = 0;

            mlpbase.mlpproperties(network, ref nin, ref nout, ref wcount);
            
            //
            // Process root call
            //
            if( isrootcall )
            {
                
                //
                // Check correctness of parameters
                //
                alglib.ap.assert(algokind==0 || algokind==-1, "MLPTrainNetworkX: unexpected AlgoKind");
                alglib.ap.assert(s.npoints>=0, "MLPTrainNetworkX: internal error - parameter S is not initialized or is spoiled(S.NPoints<0)");
                if( s.rcpar )
                {
                    ttype = 0;
                }
                else
                {
                    ttype = 1;
                }
                if( !mlpbase.mlpissoftmax(network) )
                {
                    ntype = 0;
                }
                else
                {
                    ntype = 1;
                }
                alglib.ap.assert(ntype==ttype, "MLPTrainNetworkX: internal error - type of the training network is not similar to network type in trainer object");
                alglib.ap.assert(s.nin==nin, "MLPTrainNetworkX: internal error - number of inputs in trainer is not equal to number of inputs in the training network.");
                alglib.ap.assert(s.nout==nout, "MLPTrainNetworkX: internal error - number of outputs in trainer is not equal to number of outputs in the training network.");
                alglib.ap.assert(nrestarts>=0, "MLPTrainNetworkX: internal error - NRestarts<0.");
                alglib.ap.assert(alglib.ap.len(trnsubset)>=trnsubsetsize, "MLPTrainNetworkX: internal error - parameter TrnSubsetSize more than input subset size(Length(TrnSubset)<TrnSubsetSize)");
                for(i=0; i<=trnsubsetsize-1; i++)
                {
                    alglib.ap.assert(trnsubset[i]>=0 && trnsubset[i]<=s.npoints-1, "MLPTrainNetworkX: internal error - parameter TrnSubset contains incorrect index(TrnSubset[I]<0 or TrnSubset[I]>S.NPoints-1)");
                }
                alglib.ap.assert(alglib.ap.len(valsubset)>=valsubsetsize, "MLPTrainNetworkX: internal error - parameter ValSubsetSize more than input subset size(Length(ValSubset)<ValSubsetSize)");
                for(i=0; i<=valsubsetsize-1; i++)
                {
                    alglib.ap.assert(valsubset[i]>=0 && valsubset[i]<=s.npoints-1, "MLPTrainNetworkX: internal error - parameter ValSubset contains incorrect index(ValSubset[I]<0 or ValSubset[I]>S.NPoints-1)");
                }
                
                //
                // Train
//.........这里部分代码省略.........
开发者ID:Kerbas-ad-astra,项目名称:MechJeb2,代码行数:101,代码来源:dataanalysis.cs


示例14: mlpebagginginternal

        /*************************************************************************
        Internal bagging subroutine.

          -- ALGLIB --
             Copyright 19.02.2009 by Bochkanov Sergey
        *************************************************************************/
        private static void mlpebagginginternal(mlpe.mlpensemble ensemble,
            double[,] xy,
            int npoints,
            double decay,
            int restarts,
            double wstep,
            int maxits,
            bool lmalgorithm,
            ref int info,
            mlpreport rep,
            mlpcvreport ooberrors)
        {
            double[,] xys = new double[0,0];
            bool[] s = new bool[0];
            double[,] oobbuf = new double[0,0];
            int[] oobcntbuf = new int[0];
            double[] x = new double[0];
            double[] y = new double[0];
            double[] dy = new double[0];
            double[] dsbuf = new double[0];
            int ccnt = 0;
            int pcnt = 0;
            int i = 0;
            int j = 0;
            int k = 0;
            double v = 0;
            mlpreport tmprep = new mlpreport();
            int nin = 0;
            int nout = 0;
            int wcount = 0;
            hqrnd.hqrndstate rs = new hqrnd.hqrndstate();
            int i_ = 0;
            int i1_ = 0;

            info = 0;

            nin = mlpbase.mlpgetinputscount(ensemble.network);
            nout = mlpbase.mlpgetoutputscount(ensemble.network);
            wcount = mlpbase.mlpgetweightscount(ensemble.network);
            
            //
            // Test for inputs
            //
            if( (!lmalgorithm && (double)(wstep)==(double)(0)) && maxits==0 )
            {
                info = -8;
                return;
            }
            if( ((npoints<=0 || restarts<1) || (double)(wstep)<(double)(0)) || maxits<0 )
            {
                info = -1;
                return;
            }
            if( mlpbase.mlpissoftmax(ensemble.network) )
            {
                for(i=0; i<=npoints-1; i++)
                {
                    if( (int)Math.Round(xy[i,nin])<0 || (int)Math.Round(xy[i,nin])>=nout )
                    {
                        info = -2;
                        return;
                    }
                }
            }
            
            //
            // allocate temporaries
            //
            info = 2;
            rep.ngrad = 0;
            rep.nhess = 0;
            rep.ncholesky = 0;
            ooberrors.relclserror = 0;
            ooberrors.avgce = 0;
            ooberrors.rmserror = 0;
            ooberrors.avgerror = 0;
            ooberrors.avgrelerror = 0;
            if( mlpbase.mlpissoftmax(ensemble.network) )
            {
                ccnt = nin+1;
                pcnt = nin;
            }
            else
            {
                ccnt = nin+nout;
                pcnt = nin+nout;
            }
            xys = new double[npoints, ccnt];
            s = new bool[npoints];
            oobbuf = new double[npoints, nout];
            oobcntbuf = new int[npoints];
            x = new double[nin];
            y = new double[nout];
            if( mlpbase.mlpissoftmax(ensemble.network) )
//.........这里部分代码省略.........
开发者ID:Kerbas-ad-astra,项目名称:MechJeb2,代码行数:101,代码来源:dataanalysis.cs


示例15: _pexec_mlptrainnetwork

 /*************************************************************************
 Single-threaded stub. HPC ALGLIB replaces it by multithreaded code.
 *************************************************************************/
 public static void _pexec_mlptrainnetwork(mlptrainer s,
     mlpbase.multilayerperceptron network,
     int nrestarts,
     mlpreport rep)
 {
     mlptrainnetwork(s,network,nrestarts,rep);
 }
开发者ID:Kerbas-ad-astra,项目名称:MechJeb2,代码行数:10,代码来源:dataanalysis.cs


示例16: dimensionality


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
C# mlptrainer类代码示例发布时间:2022-05-24
下一篇:
C# mlpensemble类代码示例发布时间:2022-05-24
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap