• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

C# densesolverreport类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了C#中densesolverreport的典型用法代码示例。如果您正苦于以下问题:C# densesolverreport类的具体用法?C# densesolverreport怎么用?C# densesolverreport使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



densesolverreport类属于命名空间,在下文中一共展示了densesolverreport类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C#代码示例。

示例1: RMatrixLUSolve

    /*************************************************************************
    Dense solver. Same as RMatrixLUSolve(), but for  HPD matrices  represented
    by their Cholesky decomposition.

    Algorithm features:
    * automatic detection of degenerate cases
    * O(N^2) complexity
    * condition number estimation
    * matrix is represented by its upper or lower triangle

    No iterative refinement is provided because such partial representation of
    matrix does not allow efficient calculation of extra-precise  matrix-vector
    products for large matrices. Use RMatrixSolve or RMatrixMixedSolve  if  you
    need iterative refinement.

    INPUT PARAMETERS
        CHA     -   array[0..N-1,0..N-1], Cholesky decomposition,
                    SPDMatrixCholesky result
        N       -   size of A
        IsUpper -   what half of CHA is provided
        B       -   array[0..N-1], right part

    OUTPUT PARAMETERS
        Info    -   same as in RMatrixSolve
        Rep     -   same as in RMatrixSolve
        X       -   same as in RMatrixSolve

      -- ALGLIB --
         Copyright 27.01.2010 by Bochkanov Sergey
    *************************************************************************/
    public static void hpdmatrixcholeskysolve(complex[,] cha, int n, bool isupper, complex[] b, out int info, out densesolverreport rep, out complex[] x)
    {
        info = 0;
        rep = new densesolverreport();
        x = new complex[0];
        densesolver.hpdmatrixcholeskysolve(cha, n, isupper, b, ref info, rep.innerobj, ref x);
        return;
    }
开发者ID:orlovk,项目名称:PtProject,代码行数:38,代码来源:solvers.cs


示例2: RMatrixMixedSolve

    /*************************************************************************
    Dense solver. Same as RMatrixMixedSolve(), but for complex matrices.

    Algorithm features:
    * automatic detection of degenerate cases
    * condition number estimation
    * iterative refinement
    * O(N^2) complexity

    INPUT PARAMETERS
        A       -   array[0..N-1,0..N-1], system matrix
        LUA     -   array[0..N-1,0..N-1], LU decomposition, CMatrixLU result
        P       -   array[0..N-1], pivots array, CMatrixLU result
        N       -   size of A
        B       -   array[0..N-1], right part

    OUTPUT PARAMETERS
        Info    -   same as in RMatrixSolveM
        Rep     -   same as in RMatrixSolveM
        X       -   same as in RMatrixSolveM

      -- ALGLIB --
         Copyright 27.01.2010 by Bochkanov Sergey
    *************************************************************************/
    public static void cmatrixmixedsolve(complex[,] a, complex[,] lua, int[] p, int n, complex[] b, out int info, out densesolverreport rep, out complex[] x)
    {
        info = 0;
        rep = new densesolverreport();
        x = new complex[0];
        densesolver.cmatrixmixedsolve(a, lua, p, n, b, ref info, rep.innerobj, ref x);
        return;
    }
开发者ID:orlovk,项目名称:PtProject,代码行数:32,代码来源:solvers.cs


示例3: smp_spdmatrixsolve

 public static void smp_spdmatrixsolve(double[,] a, int n, bool isupper, double[] b, out int info, out densesolverreport rep, out double[] x)
 {
     info = 0;
     rep = new densesolverreport();
     x = new double[0];
     densesolver._pexec_spdmatrixsolve(a, n, isupper, b, ref info, rep.innerobj, ref x);
     return;
 }
开发者ID:orlovk,项目名称:PtProject,代码行数:8,代码来源:solvers.cs


示例4: cmatrixlusolveinternal

        /*************************************************************************
        Internal LU solver

          -- ALGLIB --
             Copyright 27.01.2010 by Bochkanov Sergey
        *************************************************************************/
        private static void cmatrixlusolveinternal(complex[,] lua,
            int[] p,
            double scalea,
            int n,
            complex[,] a,
            bool havea,
            complex[,] b,
            int m,
            ref int info,
            densesolverreport rep,
            ref complex[,] x)
        {
            int i = 0;
            int j = 0;
            int k = 0;
            int rfs = 0;
            int nrfs = 0;
            complex[] xc = new complex[0];
            complex[] y = new complex[0];
            complex[] bc = new complex[0];
            complex[] xa = new complex[0];
            complex[] xb = new complex[0];
            complex[] tx = new complex[0];
            double[] tmpbuf = new double[0];
            complex v = 0;
            double verr = 0;
            double mxb = 0;
            double scaleright = 0;
            bool smallerr = new bool();
            bool terminatenexttime = new bool();
            int i_ = 0;

            info = 0;
            x = new complex[0,0];

            alglib.ap.assert((double)(scalea)>(double)(0));
            
            //
            // prepare: check inputs, allocate space...
            //
            if( n<=0 || m<=0 )
            {
                info = -1;
                return;
            }
            for(i=0; i<=n-1; i++)
            {
                if( p[i]>n-1 || p[i]<i )
                {
                    info = -1;
                    return;
                }
            }
            x = new complex[n, m];
            y = new complex[n];
            xc = new complex[n];
            bc = new complex[n];
            tx = new complex[n];
            xa = new complex[n+1];
            xb = new complex[n+1];
            tmpbuf = new double[2*n+2];
            
            //
            // estimate condition number, test for near singularity
            //
            rep.r1 = rcond.cmatrixlurcond1(lua, n);
            rep.rinf = rcond.cmatrixlurcondinf(lua, n);
            if( (double)(rep.r1)<(double)(rcond.rcondthreshold()) || (double)(rep.rinf)<(double)(rcond.rcondthreshold()) )
            {
                for(i=0; i<=n-1; i++)
                {
                    for(j=0; j<=m-1; j++)
                    {
                        x[i,j] = 0;
                    }
                }
                rep.r1 = 0;
                rep.rinf = 0;
                info = -3;
                return;
            }
            info = 1;
            
            //
            // solve
            //
            for(k=0; k<=m-1; k++)
            {
                
                //
                // copy B to contiguous storage
                //
                for(i_=0; i_<=n-1;i_++)
                {
//.........这里部分代码省略.........
开发者ID:orlovk,项目名称:PtProject,代码行数:101,代码来源:solvers.cs


示例5: smp_cmatrixsolve

 public static void smp_cmatrixsolve(complex[,] a, int n, complex[] b, out int info, out densesolverreport rep, out complex[] x)
 {
     info = 0;
     rep = new densesolverreport();
     x = new complex[0];
     densesolver._pexec_cmatrixsolve(a, n, b, ref info, rep.innerobj, ref x);
     return;
 }
开发者ID:orlovk,项目名称:PtProject,代码行数:8,代码来源:solvers.cs


示例6: _pexec_hpdmatrixsolve

 /*************************************************************************
 Single-threaded stub. HPC ALGLIB replaces it by multithreaded code.
 *************************************************************************/
 public static void _pexec_hpdmatrixsolve(complex[,] a,
     int n,
     bool isupper,
     complex[] b,
     ref int info,
     densesolverreport rep,
     ref complex[] x)
 {
     hpdmatrixsolve(a,n,isupper,b,ref info,rep,ref x);
 }
开发者ID:orlovk,项目名称:PtProject,代码行数:13,代码来源:solvers.cs


示例7: RMatrixSolveM

        /*************************************************************************
        Dense solver. Same as RMatrixSolveM(), but for complex matrices.

        Algorithm features:
        * automatic detection of degenerate cases
        * condition number estimation
        * iterative refinement
        * O(N^3+M*N^2) complexity

        COMMERCIAL EDITION OF ALGLIB:

          ! Commercial version of ALGLIB includes two  important  improvements  of
          ! this function, which can be used from C++ and C#:
          ! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
          ! * multicore support
          !
          ! Intel MKL gives approximately constant  (with  respect  to  number  of
          ! worker threads) acceleration factor which depends on CPU  being  used,
          ! problem  size  and  "baseline"  ALGLIB  edition  which  is  used   for
          ! comparison.
          !
          ! Say, on SSE2-capable CPU with N=1024, HPC ALGLIB will be:
          ! * about 2-3x faster than ALGLIB for C++ without MKL
          ! * about 7-10x faster than "pure C#" edition of ALGLIB
          ! Difference in performance will be more striking  on  newer  CPU's with
          ! support for newer SIMD instructions. Generally,  MKL  accelerates  any
          ! problem whose size is at least 128, with best  efficiency achieved for
          ! N's larger than 512.
          !
          ! Commercial edition of ALGLIB also supports multithreaded  acceleration
          ! of this function. We should note that LU decomposition  is  harder  to
          ! parallelize than, say, matrix-matrix  product  -  this  algorithm  has
          ! many internal synchronization points which can not be avoided. However
          ! parallelism starts to be profitable starting  from  N=1024,  achieving
          ! near-linear speedup for N=4096 or higher.
          !
          ! In order to use multicore features you have to:
          ! * use commercial version of ALGLIB
          ! * call  this  function  with  "smp_"  prefix,  which  indicates  that
          !   multicore code will be used (for multicore support)
          !
          ! We recommend you to read 'Working with commercial version' section  of
          ! ALGLIB Reference Manual in order to find out how to  use  performance-
          ! related features provided by commercial edition of ALGLIB.

        INPUT PARAMETERS
            A       -   array[0..N-1,0..N-1], system matrix
            N       -   size of A
            B       -   array[0..N-1,0..M-1], right part
            M       -   right part size
            RFS     -   iterative refinement switch:
                        * True - refinement is used.
                          Less performance, more precision.
                        * False - refinement is not used.
                          More performance, less precision.

        OUTPUT PARAMETERS
            Info    -   same as in RMatrixSolve
            Rep     -   same as in RMatrixSolve
            X       -   same as in RMatrixSolve

          -- ALGLIB --
             Copyright 27.01.2010 by Bochkanov Sergey
        *************************************************************************/
        public static void cmatrixsolvem(complex[,] a,
            int n,
            complex[,] b,
            int m,
            bool rfs,
            ref int info,
            densesolverreport rep,
            ref complex[,] x)
        {
            complex[,] da = new complex[0,0];
            complex[,] emptya = new complex[0,0];
            int[] p = new int[0];
            double scalea = 0;
            int i = 0;
            int j = 0;
            int i_ = 0;

            info = 0;
            x = new complex[0,0];

            
            //
            // prepare: check inputs, allocate space...
            //
            if( n<=0 || m<=0 )
            {
                info = -1;
                return;
            }
            da = new complex[n, n];
            
            //
            // 1. scale matrix, max(|A[i,j]|)
            // 2. factorize scaled matrix
            // 3. solve
            //
//.........这里部分代码省略.........
开发者ID:orlovk,项目名称:PtProject,代码行数:101,代码来源:solvers.cs


示例8: rmatrixlusolve

    /*************************************************************************
    Dense solver.

    This  subroutine  solves  a  system  A*X=B,  where A is NxN non-denegerate
    real matrix given by its LU decomposition, X and B are NxM real matrices.

    Algorithm features:
    * automatic detection of degenerate cases
    * O(N^2) complexity
    * condition number estimation

    No iterative refinement  is provided because exact form of original matrix
    is not known to subroutine. Use RMatrixSolve or RMatrixMixedSolve  if  you
    need iterative refinement.

    INPUT PARAMETERS
        LUA     -   array[0..N-1,0..N-1], LU decomposition, RMatrixLU result
        P       -   array[0..N-1], pivots array, RMatrixLU result
        N       -   size of A
        B       -   array[0..N-1], right part

    OUTPUT PARAMETERS
        Info    -   same as in RMatrixSolve
        Rep     -   same as in RMatrixSolve
        X       -   same as in RMatrixSolve

      -- ALGLIB --
         Copyright 27.01.2010 by Bochkanov Sergey
    *************************************************************************/
    public static void rmatrixlusolve(double[,] lua, int[] p, int n, double[] b, out int info, out densesolverreport rep, out double[] x)
    {
        info = 0;
        rep = new densesolverreport();
        x = new double[0];
        densesolver.rmatrixlusolve(lua, p, n, b, ref info, rep.innerobj, ref x);
        return;
    }
开发者ID:orlovk,项目名称:PtProject,代码行数:37,代码来源:solvers.cs


示例9: smp_rmatrixsolvem

 public static void smp_rmatrixsolvem(double[,] a, int n, double[,] b, int m, bool rfs, out int info, out densesolverreport rep, out double[,] x)
 {
     info = 0;
     rep = new densesolverreport();
     x = new double[0,0];
     densesolver._pexec_rmatrixsolvem(a, n, b, m, rfs, ref info, rep.innerobj, ref x);
     return;
 }
开发者ID:orlovk,项目名称:PtProject,代码行数:8,代码来源:solvers.cs


示例10: rmatrixmixedsolve

        /*************************************************************************
        Dense solver.

        This  subroutine  solves  a  system  A*x=b,  where BOTH ORIGINAL A AND ITS
        LU DECOMPOSITION ARE KNOWN. You can use it if for some  reasons  you  have
        both A and its LU decomposition.

        Algorithm features:
        * automatic detection of degenerate cases
        * condition number estimation
        * iterative refinement
        * O(N^2) complexity

        INPUT PARAMETERS
            A       -   array[0..N-1,0..N-1], system matrix
            LUA     -   array[0..N-1,0..N-1], LU decomposition, RMatrixLU result
            P       -   array[0..N-1], pivots array, RMatrixLU result
            N       -   size of A
            B       -   array[0..N-1], right part

        OUTPUT PARAMETERS
            Info    -   same as in RMatrixSolveM
            Rep     -   same as in RMatrixSolveM
            X       -   same as in RMatrixSolveM

          -- ALGLIB --
             Copyright 27.01.2010 by Bochkanov Sergey
        *************************************************************************/
        public static void rmatrixmixedsolve(double[,] a,
            double[,] lua,
            int[] p,
            int n,
            double[] b,
            ref int info,
            densesolverreport rep,
            ref double[] x)
        {
            double[,] bm = new double[0,0];
            double[,] xm = new double[0,0];
            int i_ = 0;

            info = 0;
            x = new double[0];

            if( n<=0 )
            {
                info = -1;
                return;
            }
            bm = new double[n, 1];
            for(i_=0; i_<=n-1;i_++)
            {
                bm[i_,0] = b[i_];
            }
            rmatrixmixedsolvem(a, lua, p, n, bm, 1, ref info, rep, ref xm);
            x = new double[n];
            for(i_=0; i_<=n-1;i_++)
            {
                x[i_] = xm[i_,0];
            }
        }
开发者ID:orlovk,项目名称:PtProject,代码行数:61,代码来源:solvers.cs


示例11: _pexec_rmatrixsolvem

 /*************************************************************************
 Single-threaded stub. HPC ALGLIB replaces it by multithreaded code.
 *************************************************************************/
 public static void _pexec_rmatrixsolvem(double[,] a,
     int n,
     double[,] b,
     int m,
     bool rfs,
     ref int info,
     densesolverreport rep,
     ref double[,] x)
 {
     rmatrixsolvem(a,n,b,m,rfs,ref info,rep,ref x);
 }
开发者ID:orlovk,项目名称:PtProject,代码行数:14,代码来源:solvers.cs


示例12: _pexec_rmatrixsolve

 /*************************************************************************
 Single-threaded stub. HPC ALGLIB replaces it by multithreaded code.
 *************************************************************************/
 public static void _pexec_rmatrixsolve(double[,] a,
     int n,
     double[] b,
     ref int info,
     densesolverreport rep,
     ref double[] x)
 {
     rmatrixsolve(a,n,b,ref info,rep,ref x);
 }
开发者ID:orlovk,项目名称:PtProject,代码行数:12,代码来源:solvers.cs


示例13: make_copy

 public override alglib.apobject make_copy()
 {
     densesolverreport _result = new densesolverreport();
     _result.r1 = r1;
     _result.rinf = rinf;
     return _result;
 }
开发者ID:orlovk,项目名称:PtProject,代码行数:7,代码来源:solvers.cs


示例14: _pexec_cmatrixsolvem

 /*************************************************************************
 Single-threaded stub. HPC ALGLIB replaces it by multithreaded code.
 *************************************************************************/
 public static void _pexec_cmatrixsolvem(complex[,] a,
     int n,
     complex[,] b,
     int m,
     bool rfs,
     ref int info,
     densesolverreport rep,
     ref complex[,] x)
 {
     cmatrixsolvem(a,n,b,m,rfs,ref info,rep,ref x);
 }
开发者ID:orlovk,项目名称:PtProject,代码行数:14,代码来源:solvers.cs


示例15: _pexec_cmatrixsolve

 /*************************************************************************
 Single-threaded stub. HPC ALGLIB replaces it by multithreaded code.
 *************************************************************************/
 public static void _pexec_cmatrixsolve(complex[,] a,
     int n,
     complex[] b,
     ref int info,
     densesolverreport rep,
     ref complex[] x)
 {
     cmatrixsolve(a,n,b,ref info,rep,ref x);
 }
开发者ID:orlovk,项目名称:PtProject,代码行数:12,代码来源:solvers.cs


示例16: RMatrixLUSolveM

        /*************************************************************************
        Dense solver. Same as RMatrixLUSolveM(), but for HPD matrices  represented
        by their Cholesky decomposition.

        Algorithm features:
        * automatic detection of degenerate cases
        * O(M*N^2) complexity
        * condition number estimation
        * matrix is represented by its upper or lower triangle

        No iterative refinement is provided because such partial representation of
        matrix does not allow efficient calculation of extra-precise  matrix-vector
        products for large matrices. Use RMatrixSolve or RMatrixMixedSolve  if  you
        need iterative refinement.

        INPUT PARAMETERS
            CHA     -   array[0..N-1,0..N-1], Cholesky decomposition,
                        HPDMatrixCholesky result
            N       -   size of CHA
            IsUpper -   what half of CHA is provided
            B       -   array[0..N-1,0..M-1], right part
            M       -   right part size

        OUTPUT PARAMETERS
            Info    -   same as in RMatrixSolve
            Rep     -   same as in RMatrixSolve
            X       -   same as in RMatrixSolve

          -- ALGLIB --
             Copyright 27.01.2010 by Bochkanov Sergey
        *************************************************************************/
        public static void hpdmatrixcholeskysolvem(complex[,] cha,
            int n,
            bool isupper,
            complex[,] b,
            int m,
            ref int info,
            densesolverreport rep,
            ref complex[,] x)
        {
            complex[,] emptya = new complex[0,0];
            double sqrtscalea = 0;
            int i = 0;
            int j = 0;
            int j1 = 0;
            int j2 = 0;

            info = 0;
            x = new complex[0,0];

            
            //
            // prepare: check inputs, allocate space...
            //
            if( n<=0 || m<=0 )
            {
                info = -1;
                return;
            }
            
            //
            // 1. scale matrix, max(|U[i,j]|)
            // 2. factorize scaled matrix
            // 3. solve
            //
            sqrtscalea = 0;
            for(i=0; i<=n-1; i++)
            {
                if( isupper )
                {
                    j1 = i;
                    j2 = n-1;
                }
                else
                {
                    j1 = 0;
                    j2 = i;
                }
                for(j=j1; j<=j2; j++)
                {
                    sqrtscalea = Math.Max(sqrtscalea, math.abscomplex(cha[i,j]));
                }
            }
            if( (double)(sqrtscalea)==(double)(0) )
            {
                sqrtscalea = 1;
            }
            sqrtscalea = 1/sqrtscalea;
            hpdmatrixcholeskysolveinternal(cha, sqrtscalea, n, isupper, emptya, false, b, m, ref info, rep, ref x);
        }
开发者ID:orlovk,项目名称:PtProject,代码行数:90,代码来源:solvers.cs


示例17: RMatrixMixedSolveM

        /*************************************************************************
        Dense solver. Same as RMatrixMixedSolveM(), but for complex matrices.

        Algorithm features:
        * automatic detection of degenerate cases
        * condition number estimation
        * iterative refinement
        * O(M*N^2) complexity

        INPUT PARAMETERS
            A       -   array[0..N-1,0..N-1], system matrix
            LUA     -   array[0..N-1,0..N-1], LU decomposition, CMatrixLU result
            P       -   array[0..N-1], pivots array, CMatrixLU result
            N       -   size of A
            B       -   array[0..N-1,0..M-1], right part
            M       -   right part size

        OUTPUT PARAMETERS
            Info    -   same as in RMatrixSolveM
            Rep     -   same as in RMatrixSolveM
            X       -   same as in RMatrixSolveM

          -- ALGLIB --
             Copyright 27.01.2010 by Bochkanov Sergey
        *************************************************************************/
        public static void cmatrixmixedsolvem(complex[,] a,
            complex[,] lua,
            int[] p,
            int n,
            complex[,] b,
            int m,
            ref int info,
            densesolverreport rep,
            ref complex[,] x)
        {
            double scalea = 0;
            int i = 0;
            int j = 0;

            info = 0;
            x = new complex[0,0];

            
            //
            // prepare: check inputs, allocate space...
            //
            if( n<=0 || m<=0 )
            {
                info = -1;
                return;
            }
            
            //
            // 1. scale matrix, max(|A[i,j]|)
            // 2. factorize scaled matrix
            // 3. solve
            //
            scalea = 0;
            for(i=0; i<=n-1; i++)
            {
                for(j=0; j<=n-1; j++)
                {
                    scalea = Math.Max(scalea, math.abscomplex(a[i,j]));
                }
            }
            if( (double)(scalea)==(double)(0) )
            {
                scalea = 1;
            }
            scalea = 1/scalea;
            cmatrixlusolveinternal(lua, p, scalea, n, a, true, b, m, ref info, rep, ref x);
        }
开发者ID:orlovk,项目名称:PtProject,代码行数:72,代码来源:solvers.cs


示例18: hpdmatrixcholeskysolveinternal

        /*************************************************************************
        Internal Cholesky solver

          -- ALGLIB --
             Copyright 27.01.2010 by Bochkanov Sergey
        *************************************************************************/
        private static void hpdmatrixcholeskysolveinternal(complex[,] cha,
            double sqrtscalea,
            int n,
            bool isupper,
            complex[,] a,
            bool havea,
            complex[,] b,
            int m,
            ref int info,
            densesolverreport rep,
            ref complex[,] x)
        {
            int i = 0;
            int j = 0;
            int k = 0;
            complex[] xc = new complex[0];
            complex[] y = new complex[0];
            complex[] bc = new complex[0];
            complex[] xa = new complex[0];
            complex[] xb = new complex[0];
            complex[] tx = new complex[0];
            double v = 0;
            double mxb = 0;
            double scaleright = 0;
            int i_ = 0;

            info = 0;
            x = new complex[0,0];

            alglib.ap.assert((double)(sqrtscalea)>(double)(0));
            
            //
            // prepare: check inputs, allocate space...
            //
            if( n<=0 || m<=0 )
            {
                info = -1;
                return;
            }
            x = new complex[n, m];
            y = new complex[n];
            xc = new complex[n];
            bc = new complex[n];
            tx = new complex[n+1];
            xa = new complex[n+1];
            xb = new complex[n+1];
            
            //
            // estimate condition number, test for near singularity
            //
            rep.r1 = rcond.hpdmatrixcholeskyrcond(cha, n, isupper);
            rep.rinf = rep.r1;
            if( (double)(rep.r1)<(double)(rcond.rcondthreshold()) )
            {
                for(i=0; i<=n-1; i++)
                {
                    for(j=0; j<=m-1; j++)
                    {
                        x[i,j] = 0;
                    }
                }
                rep.r1 = 0;
                rep.rinf = 0;
                info = -3;
                return;
            }
            info = 1;
            
            //
            // solve
            //
            for(k=0; k<=m-1; k++)
            {
                
                //
                // copy B to contiguous storage
                //
                for(i_=0; i_<=n-1;i_++)
                {
                    bc[i_] = b[i_,k];
                }
                
                //
                // Scale right part:
                // * MX stores max(|Bi|)
                // * ScaleRight stores actual scaling applied to B when solving systems
                //   it is chosen to make |scaleRight*b| close to 1.
                //
                mxb = 0;
                for(i=0; i<=n-1; i++)
                {
                    mxb = Math.Max(mxb, math.abscomplex(bc[i]));
                }
                if( (double)(mxb)==(double)(0) )
//.........这里部分代码省略.........
开发者ID:orlovk,项目名称:PtProject,代码行数:101,代码来源:solvers.cs


示例19: _pexec_spdmatrixsolve

 /*************************************************************************
 Single-threaded stub. HPC ALGLIB replaces it by multithreaded code.
 *************************************************************************/
 public static void _pexec_spdmatrixsolve(double[,] a,
     int n,
     bool isupper,
     double[] b,
     ref int info,
     densesolverreport rep,
     ref double[] x)
 {
     spdmatrixsolve(a,n,isupper,b,ref info,rep,ref x);
 }
开发者ID:orlovk,项目名称:PtProject,代码行数:13,代码来源:solvers.cs


示例20: smp_hpdmatrixsolvem

 public static void smp_hpdmatrixsolvem(complex[,] a, int n, bool isupper, complex[,] b, int m, out int info, out densesolverreport rep, out complex[,] x)
 {
     info = 0;
     rep = new densesolverreport();
     x = new complex[0,0];
     densesolver._pexec_hpdmatrixsolvem(a, n, isupper, b, m, ref info, rep.innerobj, ref x);
     return;
 }
开发者ID:orlovk,项目名称:PtProject,代码行数:8,代码来源:solvers.cs



注:本文中的densesolverreport类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
C# dfAtlas类代码示例发布时间:2022-05-24
下一篇:
C# decisionforest类代码示例发布时间:2022-05-24
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap