• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

C# barycentricinterpolant类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了C#中barycentricinterpolant的典型用法代码示例。如果您正苦于以下问题:C# barycentricinterpolant类的具体用法?C# barycentricinterpolant怎么用?C# barycentricinterpolant使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



barycentricinterpolant类属于命名空间,在下文中一共展示了barycentricinterpolant类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C#代码示例。

示例1: F

        /*************************************************************************
        Rational interpolation using barycentric formula

        F(t) = SUM(i=0,n-1,w[i]*f[i]/(t-x[i])) / SUM(i=0,n-1,w[i]/(t-x[i]))

        Input parameters:
            B   -   barycentric interpolant built with one of model building
                    subroutines.
            T   -   interpolation point

        Result:
            barycentric interpolant F(t)

          -- ALGLIB --
             Copyright 17.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static double barycentriccalc(ref barycentricinterpolant b,
            double t)
        {
            double result = 0;
            double s1 = 0;
            double s2 = 0;
            double s = 0;
            double v = 0;
            int i = 0;

            
            //
            // special case: N=1
            //
            if( b.n==1 )
            {
                result = b.sy*b.y[0];
                return result;
            }
            
            //
            // Here we assume that task is normalized, i.e.:
            // 1. abs(Y[i])<=1
            // 2. abs(W[i])<=1
            // 3. X[] is ordered
            //
            s = Math.Abs(t-b.x[0]);
            for(i=0; i<=b.n-1; i++)
            {
                v = b.x[i];
                if( (double)(v)==(double)(t) )
                {
                    result = b.sy*b.y[i];
                    return result;
                }
                v = Math.Abs(t-v);
                if( (double)(v)<(double)(s) )
                {
                    s = v;
                }
            }
            s1 = 0;
            s2 = 0;
            for(i=0; i<=b.n-1; i++)
            {
                v = s/(t-b.x[i]);
                v = v*b.w[i];
                s1 = s1+v*b.y[i];
                s2 = s2+v;
            }
            result = b.sy*s1/s2;
            return result;
        }
开发者ID:palefacer,项目名称:TelescopeOrientation,代码行数:69,代码来源:ratint.cs


示例2: MaxRealNumber

        /*************************************************************************
        Differentiation of barycentric interpolant: first derivative.

        Algorithm used in this subroutine is very robust and should not fail until
        provided with values too close to MaxRealNumber  (usually  MaxRealNumber/N
        or greater will overflow).

        INPUT PARAMETERS:
            B   -   barycentric interpolant built with one of model building
                    subroutines.
            T   -   interpolation point

        OUTPUT PARAMETERS:
            F   -   barycentric interpolant at T
            DF  -   first derivative
            
        NOTE


          -- ALGLIB --
             Copyright 17.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void barycentricdiff1(barycentricinterpolant b,
            double t,
            ref double f,
            ref double df)
        {
            double v = 0;
            double vv = 0;
            int i = 0;
            int k = 0;
            double n0 = 0;
            double n1 = 0;
            double d0 = 0;
            double d1 = 0;
            double s0 = 0;
            double s1 = 0;
            double xk = 0;
            double xi = 0;
            double xmin = 0;
            double xmax = 0;
            double xscale1 = 0;
            double xoffs1 = 0;
            double xscale2 = 0;
            double xoffs2 = 0;
            double xprev = 0;

            f = 0;
            df = 0;

            alglib.ap.assert(!Double.IsInfinity(t), "BarycentricDiff1: infinite T!");
            
            //
            // special case: NaN
            //
            if( Double.IsNaN(t) )
            {
                f = Double.NaN;
                df = Double.NaN;
                return;
            }
            
            //
            // special case: N=1
            //
            if( b.n==1 )
            {
                f = b.sy*b.y[0];
                df = 0;
                return;
            }
            if( (double)(b.sy)==(double)(0) )
            {
                f = 0;
                df = 0;
                return;
            }
            alglib.ap.assert((double)(b.sy)>(double)(0), "BarycentricDiff1: internal error");
            
            //
            // We assume than N>1 and B.SY>0. Find:
            // 1. pivot point (X[i] closest to T)
            // 2. width of interval containing X[i]
            //
            v = Math.Abs(b.x[0]-t);
            k = 0;
            xmin = b.x[0];
            xmax = b.x[0];
            for(i=1; i<=b.n-1; i++)
            {
                vv = b.x[i];
                if( (double)(Math.Abs(vv-t))<(double)(v) )
                {
                    v = Math.Abs(vv-t);
                    k = i;
                }
                xmin = Math.Min(xmin, vv);
                xmax = Math.Max(xmax, vv);
            }
            
//.........这里部分代码省略.........
开发者ID:KBrus,项目名称:nton-rbm,代码行数:101,代码来源:interpolation.cs


示例3: make_copy

 public override alglib.apobject make_copy()
 {
     barycentricinterpolant _result = new barycentricinterpolant();
     _result.n = n;
     _result.sy = sy;
     _result.x = (double[])x.Clone();
     _result.y = (double[])y.Clone();
     _result.w = (double[])w.Clone();
     return _result;
 }
开发者ID:KBrus,项目名称:nton-rbm,代码行数:10,代码来源:interpolation.cs


示例4: D

    /*************************************************************************
    Rational least squares fitting using  Floater-Hormann  rational  functions
    with optimal D chosen from [0,9].

    Equidistant  grid  with M node on [min(x),max(x)]  is  used to build basis
    functions. Different values of D are tried, optimal  D  (least  root  mean
    square error) is chosen.  Task  is  linear, so linear least squares solver
    is used. Complexity  of  this  computational  scheme is  O(N*M^2)  (mostly
    dominated by the least squares solver).

    INPUT PARAMETERS:
        X   -   points, array[0..N-1].
        Y   -   function values, array[0..N-1].
        N   -   number of points, N>0.
        M   -   number of basis functions ( = number_of_nodes), M>=2.

    OUTPUT PARAMETERS:
        Info-   same format as in LSFitLinearWC() subroutine.
                * Info>0    task is solved
                * Info<=0   an error occured:
                            -4 means inconvergence of internal SVD
                            -3 means inconsistent constraints
        B   -   barycentric interpolant.
        Rep -   report, same format as in LSFitLinearWC() subroutine.
                Following fields are set:
                * DBest         best value of the D parameter
                * RMSError      rms error on the (X,Y).
                * AvgError      average error on the (X,Y).
                * AvgRelError   average relative error on the non-zero Y
                * MaxError      maximum error
                                NON-WEIGHTED ERRORS ARE CALCULATED

      -- ALGLIB PROJECT --
         Copyright 18.08.2009 by Bochkanov Sergey
    *************************************************************************/
    public static void barycentricfitfloaterhormann(double[] x, double[] y, int n, int m, out int info, out barycentricinterpolant b, out barycentricfitreport rep)
    {
        info = 0;
        b = new barycentricinterpolant();
        rep = new barycentricfitreport();
        lsfit.barycentricfitfloaterhormann(x, y, n, m, ref info, b.innerobj, rep.innerobj);
        return;
    }
开发者ID:Ring-r,项目名称:opt,代码行数:43,代码来源:interpolation.cs


示例5: barycentriccalcbasis

        /*************************************************************************
        Internal subroutine, calculates barycentric basis functions.
        Used for efficient simultaneous calculation of N basis functions.

          -- ALGLIB --
             Copyright 17.08.2009 by Bochkanov Sergey
        *************************************************************************/
        private static void barycentriccalcbasis(ref barycentricinterpolant b,
            double t,
            ref double[] y)
        {
            double s2 = 0;
            double s = 0;
            double v = 0;
            int i = 0;
            int j = 0;
            int i_ = 0;

            
            //
            // special case: N=1
            //
            if( b.n==1 )
            {
                y[0] = 1;
                return;
            }
            
            //
            // Here we assume that task is normalized, i.e.:
            // 1. abs(Y[i])<=1
            // 2. abs(W[i])<=1
            // 3. X[] is ordered
            //
            // First, we decide: should we use "safe" formula (guarded
            // against overflow) or fast one?
            //
            s = Math.Abs(t-b.x[0]);
            for(i=0; i<=b.n-1; i++)
            {
                v = b.x[i];
                if( (double)(v)==(double)(t) )
                {
                    for(j=0; j<=b.n-1; j++)
                    {
                        y[j] = 0;
                    }
                    y[i] = 1;
                    return;
                }
                v = Math.Abs(t-v);
                if( (double)(v)<(double)(s) )
                {
                    s = v;
                }
            }
            s2 = 0;
            for(i=0; i<=b.n-1; i++)
            {
                v = s/(t-b.x[i]);
                v = v*b.w[i];
                y[i] = v;
                s2 = s2+v;
            }
            v = 1/s2;
            for(i_=0; i_<=b.n-1;i_++)
            {
                y[i_] = v*y[i_];
            }
        }
开发者ID:palefacer,项目名称:TelescopeOrientation,代码行数:70,代码来源:ratint.cs


示例6: interpolant

        /*************************************************************************
        Copying of the barycentric interpolant (for internal use only)

        INPUT PARAMETERS:
            B   -   barycentric interpolant

        OUTPUT PARAMETERS:
            B2  -   copy(B1)

          -- ALGLIB --
             Copyright 17.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void barycentriccopy(barycentricinterpolant b,
            barycentricinterpolant b2)
        {
            int i_ = 0;

            b2.n = b.n;
            b2.sy = b.sy;
            b2.x = new double[b2.n];
            b2.y = new double[b2.n];
            b2.w = new double[b2.n];
            for(i_=0; i_<=b2.n-1;i_++)
            {
                b2.x[i_] = b.x[i_];
            }
            for(i_=0; i_<=b2.n-1;i_++)
            {
                b2.y[i_] = b.y[i_];
            }
            for(i_=0; i_<=b2.n-1;i_++)
            {
                b2.w[i_] = b.w[i_];
            }
        }
开发者ID:KBrus,项目名称:nton-rbm,代码行数:35,代码来源:interpolation.cs


示例7: F

        /*************************************************************************
        Rational interpolant from X/Y/W arrays

        F(t) = SUM(i=0,n-1,w[i]*f[i]/(t-x[i])) / SUM(i=0,n-1,w[i]/(t-x[i]))

        INPUT PARAMETERS:
            X   -   interpolation nodes, array[0..N-1]
            F   -   function values, array[0..N-1]
            W   -   barycentric weights, array[0..N-1]
            N   -   nodes count, N>0

        OUTPUT PARAMETERS:
            B   -   barycentric interpolant built from (X, Y, W)

          -- ALGLIB --
             Copyright 17.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void barycentricbuildxyw(double[] x,
            double[] y,
            double[] w,
            int n,
            barycentricinterpolant b)
        {
            int i_ = 0;

            alglib.ap.assert(n>0, "BarycentricBuildXYW: incorrect N!");
            
            //
            // fill X/Y/W
            //
            b.x = new double[n];
            b.y = new double[n];
            b.w = new double[n];
            for(i_=0; i_<=n-1;i_++)
            {
                b.x[i_] = x[i_];
            }
            for(i_=0; i_<=n-1;i_++)
            {
                b.y[i_] = y[i_];
            }
            for(i_=0; i_<=n-1;i_++)
            {
                b.w[i_] = w[i_];
            }
            b.n = n;
            
            //
            // Normalize
            //
            barycentricnormalize(b);
        }
开发者ID:KBrus,项目名称:nton-rbm,代码行数:52,代码来源:interpolation.cs


示例8: B2

        /*************************************************************************
        This  subroutine   performs   linear  transformation  of  the  barycentric
        interpolant.

        INPUT PARAMETERS:
            B       -   rational interpolant in barycentric form
            CA, CB  -   transformation coefficients: B2(x) = CA*B(x) + CB

        OUTPUT PARAMETERS:
            B       -   transformed interpolant

          -- ALGLIB PROJECT --
             Copyright 19.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void barycentriclintransy(barycentricinterpolant b,
            double ca,
            double cb)
        {
            int i = 0;
            double v = 0;
            int i_ = 0;

            for(i=0; i<=b.n-1; i++)
            {
                b.y[i] = ca*b.sy*b.y[i]+cb;
            }
            b.sy = 0;
            for(i=0; i<=b.n-1; i++)
            {
                b.sy = Math.Max(b.sy, Math.Abs(b.y[i]));
            }
            if( (double)(b.sy)>(double)(0) )
            {
                v = 1/b.sy;
                for(i_=0; i_<=b.n-1;i_++)
                {
                    b.y[i_] = v*b.y[i_];
                }
            }
        }
开发者ID:KBrus,项目名称:nton-rbm,代码行数:40,代码来源:interpolation.cs


示例9: D

        /*************************************************************************
        Weghted rational least  squares  fitting  using  Floater-Hormann  rational
        functions  with  optimal  D  chosen  from  [0,9],  with  constraints   and
        individual weights.

        Equidistant  grid  with M node on [min(x),max(x)]  is  used to build basis
        functions. Different values of D are tried, optimal D (least WEIGHTED root
        mean square error) is chosen.  Task  is  linear,  so  linear least squares
        solver  is  used.  Complexity  of  this  computational  scheme is O(N*M^2)
        (mostly dominated by the least squares solver).

        SEE ALSO
        * BarycentricFitFloaterHormann(), "lightweight" fitting without invididual
          weights and constraints.

        INPUT PARAMETERS:
            X   -   points, array[0..N-1].
            Y   -   function values, array[0..N-1].
            W   -   weights, array[0..N-1]
                    Each summand in square  sum  of  approximation deviations from
                    given  values  is  multiplied  by  the square of corresponding
                    weight. Fill it by 1's if you don't  want  to  solve  weighted
                    task.
            N   -   number of points, N>0.
            XC  -   points where function values/derivatives are constrained,
                    array[0..K-1].
            YC  -   values of constraints, array[0..K-1]
            DC  -   array[0..K-1], types of constraints:
                    * DC[i]=0   means that S(XC[i])=YC[i]
                    * DC[i]=1   means that S'(XC[i])=YC[i]
                    SEE BELOW FOR IMPORTANT INFORMATION ON CONSTRAINTS
            K   -   number of constraints, 0<=K<M.
                    K=0 means no constraints (XC/YC/DC are not used in such cases)
            M   -   number of basis functions ( = number_of_nodes), M>=2.

        OUTPUT PARAMETERS:
            Info-   same format as in LSFitLinearWC() subroutine.
                    * Info>0    task is solved
                    * Info<=0   an error occured:
                                -4 means inconvergence of internal SVD
                                -3 means inconsistent constraints
                                -1 means another errors in parameters passed
                                   (N<=0, for example)
            B   -   barycentric interpolant.
            Rep -   report, same format as in LSFitLinearWC() subroutine.
                    Following fields are set:
                    * DBest         best value of the D parameter
                    * RMSError      rms error on the (X,Y).
                    * AvgError      average error on the (X,Y).
                    * AvgRelError   average relative error on the non-zero Y
                    * MaxError      maximum error
                                    NON-WEIGHTED ERRORS ARE CALCULATED

        IMPORTANT:
            this subroitine doesn't calculate task's condition number for K<>0.

        SETTING CONSTRAINTS - DANGERS AND OPPORTUNITIES:

        Setting constraints can lead  to undesired  results,  like ill-conditioned
        behavior, or inconsistency being detected. From the other side,  it allows
        us to improve quality of the fit. Here we summarize  our  experience  with
        constrained barycentric interpolants:
        * excessive  constraints  can  be  inconsistent.   Floater-Hormann   basis
          functions aren't as flexible as splines (although they are very smooth).
        * the more evenly constraints are spread across [min(x),max(x)],  the more
          chances that they will be consistent
        * the  greater  is  M (given  fixed  constraints),  the  more chances that
          constraints will be consistent
        * in the general case, consistency of constraints IS NOT GUARANTEED.
        * in the several special cases, however, we CAN guarantee consistency.
        * one of this cases is constraints on the function  VALUES at the interval
          boundaries. Note that consustency of the  constraints  on  the  function
          DERIVATIVES is NOT guaranteed (you can use in such cases  cubic  splines
          which are more flexible).
        * another  special  case  is ONE constraint on the function value (OR, but
          not AND, derivative) anywhere in the interval

        Our final recommendation is to use constraints  WHEN  AND  ONLY  WHEN  you
        can't solve your task without them. Anything beyond  special  cases  given
        above is not guaranteed and may result in inconsistency.

          -- ALGLIB PROJECT --
             Copyright 18.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void barycentricfitfloaterhormannwc(ref double[] x,
            ref double[] y,
            ref double[] w,
            int n,
            ref double[] xc,
            ref double[] yc,
            ref int[] dc,
            int k,
            int m,
            ref int info,
            ref barycentricinterpolant b,
            ref barycentricfitreport rep)
        {
            int d = 0;
            int i = 0;
            double wrmscur = 0;
//.........这里部分代码省略.........
开发者ID:palefacer,项目名称:TelescopeOrientation,代码行数:101,代码来源:ratint.cs


示例10: barycentricunserialize

        /*************************************************************************
        Unserialization of the barycentric interpolant

        INPUT PARAMETERS:
            RA  -   array of real numbers which contains interpolant,

        OUTPUT PARAMETERS:
            B   -   barycentric interpolant

          -- ALGLIB --
             Copyright 17.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void barycentricunserialize(ref double[] ra,
            ref barycentricinterpolant b)
        {
            int i_ = 0;
            int i1_ = 0;

            System.Diagnostics.Debug.Assert((int)Math.Round(ra[1])==brcvnum, "BarycentricUnserialize: corrupted array!");
            b.n = (int)Math.Round(ra[2]);
            b.sy = ra[3];
            b.x = new double[b.n];
            b.y = new double[b.n];
            b.w = new double[b.n];
            i1_ = (4) - (0);
            for(i_=0; i_<=b.n-1;i_++)
            {
                b.x[i_] = ra[i_+i1_];
            }
            i1_ = (4+b.n) - (0);
            for(i_=0; i_<=b.n-1;i_++)
            {
                b.y[i_] = ra[i_+i1_];
            }
            i1_ = (4+2*b.n) - (0);
            for(i_=0; i_<=b.n-1;i_++)
            {
                b.w[i_] = ra[i_+i1_];
            }
        }
开发者ID:palefacer,项目名称:TelescopeOrientation,代码行数:40,代码来源:ratint.cs


示例11: barycentricserialize

        /*************************************************************************
        Serialization of the barycentric interpolant

        INPUT PARAMETERS:
            B   -   barycentric interpolant

        OUTPUT PARAMETERS:
            RA      -   array of real numbers which contains interpolant,
                        array[0..RLen-1]
            RLen    -   RA lenght

          -- ALGLIB --
             Copyright 17.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void barycentricserialize(ref barycentricinterpolant b,
            ref double[] ra,
            ref int ralen)
        {
            int i_ = 0;
            int i1_ = 0;

            ralen = 2+2+3*b.n;
            ra = new double[ralen];
            ra[0] = ralen;
            ra[1] = brcvnum;
            ra[2] = b.n;
            ra[3] = b.sy;
            i1_ = (0) - (4);
            for(i_=4; i_<=4+b.n-1;i_++)
            {
                ra[i_] = b.x[i_+i1_];
            }
            i1_ = (0) - (4+b.n);
            for(i_=4+b.n; i_<=4+2*b.n-1;i_++)
            {
                ra[i_] = b.y[i_+i1_];
            }
            i1_ = (0) - (4+2*b.n);
            for(i_=4+2*b.n; i_<=4+3*b.n-1;i_++)
            {
                ra[i_] = b.w[i_+i1_];
            }
        }
开发者ID:palefacer,项目名称:TelescopeOrientation,代码行数:43,代码来源:ratint.cs


示例12: barycentricfitwcfixedd

        /*************************************************************************
        Internal Floater-Hormann fitting subroutine for fixed D
        *************************************************************************/
        private static void barycentricfitwcfixedd(double[] x,
            double[] y,
            ref double[] w,
            int n,
            double[] xc,
            double[] yc,
            ref int[] dc,
            int k,
            int m,
            int d,
            ref int info,
            ref barycentricinterpolant b,
            ref barycentricfitreport rep)
        {
            double[,] fmatrix = new double[0,0];
            double[,] cmatrix = new double[0,0];
            double[] y2 = new double[0];
            double[] w2 = new double[0];
            double[] sx = new double[0];
            double[] sy = new double[0];
            double[] sbf = new double[0];
            double[] xoriginal = new double[0];
            double[] yoriginal = new double[0];
            double[] tmp = new double[0];
            lsfit.lsfitreport lrep = new lsfit.lsfitreport();
            double v0 = 0;
            double v1 = 0;
            double mx = 0;
            barycentricinterpolant b2 = new barycentricinterpolant();
            int i = 0;
            int j = 0;
            int relcnt = 0;
            double xa = 0;
            double xb = 0;
            double sa = 0;
            double sb = 0;
            double decay = 0;
            int i_ = 0;

            x = (double[])x.Clone();
            y = (double[])y.Clone();
            xc = (double[])xc.Clone();
            yc = (double[])yc.Clone();

            if( n<1 | m<2 | k<0 | k>=m )
            {
                info = -1;
                return;
            }
            for(i=0; i<=k-1; i++)
            {
                info = 0;
                if( dc[i]<0 )
                {
                    info = -1;
                }
                if( dc[i]>1 )
                {
                    info = -1;
                }
                if( info<0 )
                {
                    return;
                }
            }
            
            //
            // weight decay for correct handling of task which becomes
            // degenerate after constraints are applied
            //
            decay = 10000*AP.Math.MachineEpsilon;
            
            //
            // Scale X, Y, XC, YC
            //
            lsfit.lsfitscalexy(ref x, ref y, n, ref xc, ref yc, ref dc, k, ref xa, ref xb, ref sa, ref sb, ref xoriginal, ref yoriginal);
            
            //
            // allocate space, initialize:
            // * FMatrix-   values of basis functions at X[]
            // * CMatrix-   values (derivatives) of basis functions at XC[]
            //
            y2 = new double[n+m];
            w2 = new double[n+m];
            fmatrix = new double[n+m, m];
            if( k>0 )
            {
                cmatrix = new double[k, m+1];
            }
            y2 = new double[n+m];
            w2 = new double[n+m];
            
            //
            // Prepare design and constraints matrices:
            // * fill constraints matrix
            // * fill first N rows of design matrix with values
            // * fill next M rows of design matrix with regularizing term
//.........这里部分代码省略.........
开发者ID:palefacer,项目名称:TelescopeOrientation,代码行数:101,代码来源:ratint.cs


示例13: BarycentricDiff1

        /*************************************************************************
        Differentiation of barycentric interpolant: first/second derivatives.

        INPUT PARAMETERS:
            B   -   barycentric interpolant built with one of model building
                    subroutines.
            T   -   interpolation point

        OUTPUT PARAMETERS:
            F   -   barycentric interpolant at T
            DF  -   first derivative
            D2F -   second derivative

        NOTE: this algorithm may fail due to overflow/underflor if  used  on  data
        whose values are close to MaxRealNumber or MinRealNumber.  Use more robust
        BarycentricDiff1() subroutine in such cases.


          -- ALGLIB --
             Copyright 17.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void barycentricdiff2(barycentricinterpolant b,
            double t,
            ref double f,
            ref double df,
            ref double d2f)
        {
            double v = 0;
            double vv = 0;
            int i = 0;
            int k = 0;
            double n0 = 0;
            double n1 = 0;
            double n2 = 0;
            double d0 = 0;
            double d1 = 0;
            double d2 = 0;
            double s0 = 0;
            double s1 = 0;
            double s2 = 0;
            double xk = 0;
            double xi = 0;

            f = 0;
            df = 0;
            d2f = 0;

            alglib.ap.assert(!Double.IsInfinity(t), "BarycentricDiff1: infinite T!");
            
            //
            // special case: NaN
            //
            if( Double.IsNaN(t) )
            {
                f = Double.NaN;
                df = Double.NaN;
                d2f = Double.NaN;
                return;
            }
            
            //
            // special case: N=1
            //
            if( b.n==1 )
            {
                f = b.sy*b.y[0];
                df = 0;
                d2f = 0;
                return;
            }
            if( (double)(b.sy)==(double)(0) )
            {
                f = 0;
                df = 0;
                d2f = 0;
                return;
            }
            
            //
            // We assume than N>1 and B.SY>0. Find:
            // 1. pivot point (X[i] closest to T)
            // 2. width of interval containing X[i]
            //
            alglib.ap.assert((double)(b.sy)>(double)(0), "BarycentricDiff: internal error");
            f = 0;
            df = 0;
            d2f = 0;
            v = Math.Abs(b.x[0]-t);
            k = 0;
            for(i=1; i<=b.n-1; i++)
            {
                vv = b.x[i];
                if( (double)(Math.Abs(vv-t))<(double)(v) )
                {
                    v = Math.Abs(vv-t);
                    k = i;
                }
            }
            
            //
//.........这里部分代码省略.........
开发者ID:KBrus,项目名称:nton-rbm,代码行数:101,代码来源:interpolation.cs


示例14: PolynomialFitWC

    /*************************************************************************
    Fitting by polynomials in barycentric form. This function provides  simple
    unterface for unconstrained unweighted fitting. See  PolynomialFitWC()  if
    you need constrained fitting.

    Task is linear, so linear least squares solver is used. Complexity of this
    computational scheme is O(N*M^2), mostly dominated by least squares solver

    SEE ALSO:
        PolynomialFitWC()

    INPUT PARAMETERS:
        X   -   points, array[0..N-1].
        Y   -   function values, array[0..N-1].
        N   -   number of points, N>0
                * if given, only leading N elements of X/Y are used
                * if not given, automatically determined from sizes of X/Y
        M   -   number of basis functions (= polynomial_degree + 1), M>=1

    OUTPUT PARAMETERS:
        Info-   same format as in LSFitLinearW() subroutine:
                * Info>0    task is solved
                * Info<=0   an error occured:
                            -4 means inconvergence of internal SVD
        P   -   interpolant in barycentric form.
        Rep -   report, same format as in LSFitLinearW() subroutine.
                Following fields are set:
                * RMSError      rms error on the (X,Y).
                * AvgError      average error on the (X,Y).
                * AvgRelError   average relative error on the non-zero Y
                * MaxError      maximum error
                                NON-WEIGHTED ERRORS ARE CALCULATED

    NOTES:
        you can convert P from barycentric form  to  the  power  or  Chebyshev
        basis with PolynomialBar2Pow() or PolynomialBar2Cheb() functions  from
        POLINT subpackage.

      -- ALGLIB PROJECT --
         Copyright 10.12.2009 by Bochkanov Sergey
    *************************************************************************/
    public static void polynomialfit(double[] x, double[] y, int n, int m, out int info, out barycentricinterpolant p, out polynomialfitreport rep)
    {
        info = 0;
        p = new barycentricinterpolant();
        rep = new polynomialfitreport();
        lsfit.polynomialfit(x, y, n, m, ref info, p.innerobj, rep.innerobj);
        return;
    }
开发者ID:Ring-r,项目名称:opt,代码行数:49,代码来源:interpolation.cs


示例15: barycentriclintransx

        /*************************************************************************
        This subroutine performs linear transformation of the argument.

        INPUT PARAMETERS:
            B       -   rational interpolant in barycentric form
            CA, CB  -   transformation coefficients: x = CA*t + CB

        OUTPUT PARAMETERS:
            B       -   transformed interpolant with X replaced by T

          -- ALGLIB PROJECT --
             Copyright 19.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void barycentriclintransx(barycentricinterpolant b,
            double ca,
            double cb)
        {
            int i = 0;
            int j = 0;
            double v = 0;

            
            //
            // special case, replace by constant F(CB)
            //
            if( (double)(ca)==(double)(0) )
            {
                b.sy = barycentriccalc(b, cb);
                v = 1;
                for(i=0; i<=b.n-1; i++)
                {
                    b.y[i] = 1;
                    b.w[i] = v;
                    v = -v;
                }
                return;
            }
            
            //
            // general case: CA<>0
            //
            for(i=0; i<=b.n-1; i++)
            {
                b.x[i] = (b.x[i]-cb)/ca;
            }
            if( (double)(ca)<(double)(0) )
            {
                for(i=0; i<=b.n-1; i++)
                {
                    if( i<b.n-1-i )
                    {
                        j = b.n-1-i;
                        v = b.x[i];
                        b.x[i] = b.x[j];
                        b.x[j] = v;
                        v = b.y[i];
                        b.y[i] = b.y[j];
                        b.y[j] = v;
                        v = b.w[i];
                        b.w[i] = b.w[j];
                        b.w[j] = v;
                    }
                    else
                    {
                        break;
                    }
                }
            }
        }
开发者ID:KBrus,项目名称:nton-rbm,代码行数:69,代码来源:interpolation.cs


示例16: tasks

    /*************************************************************************
    Weighted  fitting by polynomials in barycentric form, with constraints  on
    function values or first derivatives.

    Small regularizing term is used when solving constrained tasks (to improve
    stability).

    Task is linear, so linear least squares solver is used. Complexity of this
    computational scheme is O(N*M^2), mostly dominated by least squares solver

    SEE ALSO:
        PolynomialFit()

    INPUT PARAMETERS:
        X   -   points, array[0..N-1].
        Y   -   function values, array[0..N-1].
        W   -   weights, array[0..N-1]
                Each summand in square  sum  of  approximation deviations from
                given  values  is  multiplied  by  the square of corresponding
                weight. Fill it by 1's if you don't  want  to  solve  weighted
                task.
        N   -   number of points, N>0.
                * if given, only leading N elements of X/Y/W are used
                * if not given, automatically determined from sizes of X/Y/W
        XC  -   points where polynomial values/derivatives are constrained,
                array[0..K-1].
        YC  -   values of constraints, array[0..K-1]
        DC  -   array[0..K-1], types of constraints:
                * DC[i]=0   means that P(XC[i])=YC[i]
                * DC[i]=1   means that P'(XC[i])=YC[i]
                SEE BELOW FOR IMPORTANT INFORMATION ON CONSTRAINTS
        K   -   number of constraints, 0<=K<M.
                K=0 means no constraints (XC/YC/DC are not used in such cases)
        M   -   number of basis functions (= polynomial_degree + 1), M>=1

    OUTPUT PARAMETERS:
        Info-   same format as in LSFitLinearW() subroutine:
                * Info>0    task is solved
                * Info<=0   an error occured:
                            -4 means inconvergence of internal SVD
                            -3 means inconsistent constraints
        P   -   interpolant in barycentric form.
        Rep -   report, same format as in LSFitLinearW() subroutine.
                Following fields are set:
                * RMSError      rms error on the (X,Y).
                * AvgError      average error on the (X,Y).
                * AvgRelError   average relative error on the non-zero Y
                * MaxError      maximum error
                                NON-WEIGHTED ERRORS ARE CALCULATED

    IMPORTANT:
        this subroitine doesn't calculate task's condition number for K<>0.

    NOTES:
        you can convert P from barycentric form  to  the  power  or  Chebyshev
        basis with PolynomialBar2Pow() or PolynomialBar2Cheb() functions  from
        POLINT subpackage.

    SETTING CONSTRAINTS - DANGERS AND OPPORTUNITIES:

    Setting constraints can lead  to undesired  results,  like ill-conditioned
    behavior, or inconsistency being detected. From the other side,  it allows
    us to improve quality of the fit. Here we summarize  our  experience  with
    constrained regression splines:
    * even simple constraints can be inconsistent, see  Wikipedia  article  on
      this subject: http://en.wikipedia.org/wiki/Birkhoff_interpolation
    * the  greater  is  M (given  fixed  constraints),  the  more chances that
      constraints will be consistent
    * in the general case, consistency of constraints is NOT GUARANTEED.
    * in the one special cases, however, we can  guarantee  consistency.  This
      case  is:  M>1  and constraints on the function values (NOT DERIVATIVES)

    Our final recommendation is to use constraints  WHEN  AND  ONLY  when  you
    can't solve your task without them. Anything beyond  special  cases  given
    above is not guaranteed and may result in inconsistency.

      -- ALGLIB PROJECT --
         Copyright 10.12.2009 by Bochkanov Sergey
    *************************************************************************/
    public static void polynomialfitwc(double[] x, double[] y, double[] w, int n, double[] xc, double[] yc, int[] dc, int k, int m, out int info, out barycentricinterpolant p, out polynomialfitreport rep)
    {
        info = 0;
        p = new barycentricinterpolant();
        rep = new polynomialfitreport();
        lsfit.polynomialfitwc(x, y, w, n, xc, yc, dc, k, m, ref info, p.innerobj, rep.innerobj);
        return;
    }
开发者ID:Ring-r,项目名称:opt,代码行数:87,代码来源:interpolation.cs


示例17: barycentricunpack

        /*************************************************************************
        Extracts X/Y/W arrays from rational interpolant

        INPUT PARAMETERS:
            B   -   barycentric interpolant

        OUTPUT PARAMETERS:
            N   -   nodes count, N>0
            X   -   interpolation nodes, array[0..N-1]
            F   -   function values, array[0..N-1]
            W   -   barycentric weights, array[0..N-1]

          -- ALGLIB --
             Copyright 17.08.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void barycentricunpack(barycentricinterpolant b,
            ref int n,
            ref double[] x,
            ref double[] y,
            ref double[] w)
        {
            double v = 0;
            int i_ = 0;

            n = 0;
            x = new double[0];
            y = new double[0];
            w = new double[0];

            n = b.n;
            x = new double[n];
            y = new double[n];
            w = new double[n];
            v = b.sy;
            for(i_=0; i_<=n-1;i_++)
            {
                x[i_] = b.x[i_];
            }
            for(i_=0; i_<=n-1;i_++)
            {
                y[i_] = v*b.y[i_];
            }
            for(i_=0; i_<=n-1;i_++)
            {
                w[i_] = b.w[i_];
            }
        }
开发者ID:KBrus,项目名称:nton-rbm,代码行数:47,代码来源:interpolation.cs


示例18: polynomialfitwc

    public static void polynomialfitwc(double[] x, double[] y, double[] w, double[] xc, double[] yc, int[] dc, int m, out int info, out barycentricinterpolant p, out polynomialfitreport rep)
    {
        int n;
        int k;
        if( (ap.len(x)!=ap.len(y)) || (ap.len(x)!=ap.len(w)))
            throw new alglibexception("Error while calling 'polynomialfitwc': looks like one of arguments has wrong size");
        if( (ap.len(xc)!=ap.len(yc)) || (ap.len(xc)!=ap.len(dc)))
            throw new alglibexception("Error while calling 'polynomialfitwc': looks like one of arguments has wrong size");
        info = 0;
        p = new barycentricinterpolant();
        rep = new polynomialfitreport();
        n = ap.len(x);
        k = ap.len(xc);
        lsfit.polynomialfitwc(x, y, w, n, xc, yc, dc, k, m, ref info, p.innerobj, rep.innerobj);

        return;
    }
开发者ID:Ring-r,项目名称:opt,代码行数:17,代码来源:interpolation.cs


示例19: poles

该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
C# baseDS类代码示例发布时间:2022-05-24
下一篇:
C# aqufitEntities类代码示例发布时间:2022-05-24
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap