本文整理汇总了C#中QRMethod类的典型用法代码示例。如果您正苦于以下问题:C# QRMethod类的具体用法?C# QRMethod怎么用?C# QRMethod使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
QRMethod类属于命名空间,在下文中一共展示了QRMethod类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C#代码示例。
示例1: Create
/// <summary>
/// Initializes a new instance of the <see cref="UserQR"/> class. This object will compute the
/// QR factorization when the constructor is called and cache it's factorization.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <param name="method">The QR factorization method to use.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
public static UserQR Create(Matrix<Complex> matrix, QRMethod method = QRMethod.Full)
{
if (matrix.RowCount < matrix.ColumnCount)
{
throw Matrix.DimensionsDontMatch<ArgumentException>(matrix);
}
Matrix<Complex> q;
Matrix<Complex> r;
var minmn = Math.Min(matrix.RowCount, matrix.ColumnCount);
var u = new Complex[minmn][];
if (method == QRMethod.Full)
{
r = matrix.Clone();
q = Matrix<Complex>.Build.SameAs(matrix, matrix.RowCount, matrix.RowCount);
for (var i = 0; i < matrix.RowCount; i++)
{
q.At(i, i, 1.0f);
}
for (var i = 0; i < minmn; i++)
{
u[i] = GenerateColumn(r, i, i);
ComputeQR(u[i], r, i, matrix.RowCount, i + 1, matrix.ColumnCount, Control.MaxDegreeOfParallelism);
}
for (var i = minmn - 1; i >= 0; i--)
{
ComputeQR(u[i], q, i, matrix.RowCount, i, matrix.RowCount, Control.MaxDegreeOfParallelism);
}
}
else
{
q = matrix.Clone();
for (var i = 0; i < minmn; i++)
{
u[i] = GenerateColumn(q, i, i);
ComputeQR(u[i], q, i, matrix.RowCount, i + 1, matrix.ColumnCount, Control.MaxDegreeOfParallelism);
}
r = q.SubMatrix(0, matrix.ColumnCount, 0, matrix.ColumnCount);
q.Clear();
for (var i = 0; i < matrix.ColumnCount; i++)
{
q.At(i, i, 1.0f);
}
for (var i = minmn - 1; i >= 0; i--)
{
ComputeQR(u[i], q, i, matrix.RowCount, i, matrix.ColumnCount, Control.MaxDegreeOfParallelism);
}
}
return new UserQR(q, r, method);
}
开发者ID:Jungwon,项目名称:mathnet-numerics,代码行数:67,代码来源:UserQR.cs
示例2: Create
/// <summary>
/// Initializes a new instance of the <see cref="UserQR"/> class. This object will compute the
/// QR factorization when the constructor is called and cache it's factorization.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <param name="method">The QR factorization method to use.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
public static UserQR Create(Matrix<double> matrix, QRMethod method = QRMethod.Full)
{
if (matrix.RowCount < matrix.ColumnCount)
{
throw Matrix.DimensionsDontMatch<ArgumentException>(matrix);
}
Matrix<double> q;
Matrix<double> r;
var minmn = Math.Min(matrix.RowCount, matrix.ColumnCount);
var u = new double[minmn][];
if (method == QRMethod.Full)
{
r = matrix.Clone();
q = matrix.CreateMatrix(matrix.RowCount, matrix.RowCount);
for (var i = 0; i < matrix.RowCount; i++)
{
q.At(i, i, 1.0);
}
for (var i = 0; i < minmn; i++)
{
u[i] = GenerateColumn(r, i, i);
ComputeQR(u[i], r, i, matrix.RowCount, i + 1, matrix.ColumnCount, Control.NumberOfParallelWorkerThreads);
}
for (var i = minmn - 1; i >= 0; i--)
{
ComputeQR(u[i], q, i, matrix.RowCount, i, matrix.RowCount, Control.NumberOfParallelWorkerThreads);
}
}
else
{
q = matrix.Clone();
for (var i = 0; i < minmn; i++)
{
u[i] = GenerateColumn(q, i, i);
ComputeQR(u[i], q, i, matrix.RowCount, i + 1, matrix.ColumnCount, Control.NumberOfParallelWorkerThreads);
}
r = q.SubMatrix(0, matrix.ColumnCount, 0, matrix.ColumnCount);
q.Clear();
for (var i = 0; i < matrix.ColumnCount; i++)
{
q.At(i, i, 1.0);
}
for (var i = minmn - 1; i >= 0; i--)
{
ComputeQR(u[i], q, i, matrix.RowCount, i, matrix.ColumnCount, Control.NumberOfParallelWorkerThreads);
}
}
return new UserQR(q, r, method);
}
开发者ID:nakamoton,项目名称:mathnet-numerics,代码行数:67,代码来源:UserQR.cs
示例3: Create
/// <summary>
/// Initializes a new instance of the <see cref="DenseQR"/> class. This object will compute the
/// QR factorization when the constructor is called and cache it's factorization.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <param name="method">The QR factorization method to use.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
/// <exception cref="ArgumentException">If <paramref name="matrix"/> row count is less then column count</exception>
public static DenseQR Create(DenseMatrix matrix, QRMethod method = QRMethod.Full)
{
if (matrix.RowCount < matrix.ColumnCount)
{
throw Matrix.DimensionsDontMatch<ArgumentException>(matrix);
}
var tau = new float[Math.Min(matrix.RowCount, matrix.ColumnCount)];
Matrix<float> q;
Matrix<float> r;
if (method == QRMethod.Full)
{
r = matrix.Clone();
q = new DenseMatrix(matrix.RowCount);
Control.LinearAlgebraProvider.QRFactor(((DenseMatrix) r).Values, matrix.RowCount, matrix.ColumnCount, ((DenseMatrix) q).Values, tau);
}
else
{
q = matrix.Clone();
r = new DenseMatrix(matrix.ColumnCount);
Control.LinearAlgebraProvider.ThinQRFactor(((DenseMatrix) q).Values, matrix.RowCount, matrix.ColumnCount, ((DenseMatrix) r).Values, tau);
}
return new DenseQR(q, r, method, tau);
}
开发者ID:Jungwon,项目名称:mathnet-numerics,代码行数:34,代码来源:DenseQR.cs
示例4: DenseQR
/// <summary>
/// Initializes a new instance of the <see cref="DenseQR"/> class. This object will compute the
/// QR factorization when the constructor is called and cache it's factorization.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <param name="method">The QR factorization method to use.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
/// <exception cref="ArgumentException">If <paramref name="matrix"/> row count is less then column count</exception>
public DenseQR(DenseMatrix matrix, QRMethod method = QRMethod.Full)
{
if (matrix == null)
{
throw new ArgumentNullException("matrix");
}
if (matrix.RowCount < matrix.ColumnCount)
{
throw Matrix.DimensionsDontMatch<ArgumentException>(matrix);
}
Tau = new Complex32[Math.Min(matrix.RowCount, matrix.ColumnCount)];
if (method == QRMethod.Full)
{
MatrixR = matrix.Clone();
MatrixQ = new DenseMatrix(matrix.RowCount);
Control.LinearAlgebraProvider.QRFactor(((DenseMatrix)MatrixR).Values, matrix.RowCount, matrix.ColumnCount,
((DenseMatrix)MatrixQ).Values, Tau);
}
else
{
MatrixQ = matrix.Clone();
MatrixR = new DenseMatrix(matrix.ColumnCount);
Control.LinearAlgebraProvider.ThinQRFactor(((DenseMatrix)MatrixQ).Values, matrix.RowCount, matrix.ColumnCount,
((DenseMatrix)MatrixR).Values, Tau);
}
}
开发者ID:the-vk,项目名称:mathnet-numerics,代码行数:37,代码来源:DenseQR.cs
示例5: QRSolveFactored
public override void QRSolveFactored(double[] q, double[] r, int rowsR, int columnsR, double[] tau, double[] b, int columnsB, double[] x, QRMethod method = QRMethod.Full)
{
var work = new double[columnsR*Control.BlockSize];
QRSolveFactored(q, r, rowsR, columnsR, tau, b, columnsB, x, work, method);
}
开发者ID:koponk,项目名称:mathnet-numerics,代码行数:5,代码来源:MklLinearAlgebraProvider.double.cs
示例6: QRSolve
public override void QRSolve(double[] a, int rows, int columns, double[] b, int columnsB, double[] x, QRMethod method = QRMethod.Full)
{
var work = new double[columns*Control.BlockSize];
QRSolve(a, rows, columns, b, columnsB, x, work, method);
}
开发者ID:koponk,项目名称:mathnet-numerics,代码行数:5,代码来源:MklLinearAlgebraProvider.double.cs
示例7: CanSolveForMatrixWithTallRandomMatrix
public void CanSolveForMatrixWithTallRandomMatrix(QRMethod method)
{
var matrixA = Matrix<Complex>.Build.Random(20, 10, 1);
var matrixACopy = matrixA.Clone();
var factorQR = matrixA.QR(method);
var matrixB = Matrix<Complex>.Build.Random(20, 5, 1);
var matrixX = factorQR.Solve(matrixB);
// The solution X row dimension is equal to the column dimension of A
Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount);
// The solution X has the same number of columns as B
Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);
var test = (matrixA.ConjugateTranspose() * matrixA).Inverse() * matrixA.ConjugateTranspose() * matrixB;
for (var i = 0; i < matrixX.RowCount; i++)
{
for (var j = 0; j < matrixX.ColumnCount; j++)
{
AssertHelpers.AlmostEqual(test[i, j], matrixX[i, j], 12);
}
}
// Make sure A didn't change.
for (var i = 0; i < matrixA.RowCount; i++)
{
for (var j = 0; j < matrixA.ColumnCount; j++)
{
Assert.AreEqual(matrixACopy[i, j], matrixA[i, j]);
}
}
}
开发者ID:skair39,项目名称:mathnet-numerics,代码行数:34,代码来源:QRTests.cs
示例8: QRFactor
public override void QRFactor(float[] r, int rowsR, int columnsR, float[] q, float[] tau, QRMethod method = QRMethod.Full)
{
if (r == null)
{
throw new ArgumentNullException("r");
}
if (q == null)
{
throw new ArgumentNullException("q");
}
if (r.Length != rowsR * columnsR)
{
throw new ArgumentException(string.Format(Resources.ArgumentArrayWrongLength, "rowsR * columnsR"), "r");
}
if (tau.Length < Math.Min(rowsR, columnsR))
{
throw new ArgumentException(string.Format(Resources.ArrayTooSmall, "min(m,n)"), "tau");
}
if (q.Length != rowsR * rowsR)
{
throw new ArgumentException(string.Format(Resources.ArgumentArrayWrongLength, "rowsR * rowsR"), "q");
}
var work = new float[columnsR * Control.BlockSize];
SafeNativeMethods.s_qr_factor(rowsR, columnsR, r, tau, q, work, work.Length);
}
开发者ID:hickford,项目名称:mathnet-numerics-native,代码行数:30,代码来源:GotoBlasLinearAlgebraProvider.float.cs
示例9: QRSolveFactored
public override void QRSolveFactored(double[] q, double[] r, int rowsR, int columnsR, double[] tau, double[] b, int columnsB, double[] x, QRMethod method = QRMethod.Full)
{
if (r == null)
{
throw new ArgumentNullException("r");
}
if (q == null)
{
throw new ArgumentNullException("q");
}
if (b == null)
{
throw new ArgumentNullException("q");
}
if (x == null)
{
throw new ArgumentNullException("q");
}
if (r.Length != rowsR*columnsR)
{
throw new ArgumentException(Resources.ArgumentArraysSameLength, "r");
}
if (q.Length != rowsR*rowsR)
{
throw new ArgumentException(Resources.ArgumentArraysSameLength, "q");
}
if (b.Length != rowsR*columnsB)
{
throw new ArgumentException(Resources.ArgumentArraysSameLength, "b");
}
if (x.Length != columnsR*columnsB)
{
throw new ArgumentException(Resources.ArgumentArraysSameLength, "x");
}
if (rowsR < columnsR)
{
throw new ArgumentException(Resources.RowsLessThanColumns);
}
var work = new double[columnsR*Control.BlockSize];
QRSolveFactored(q, r, rowsR, columnsR, tau, b, columnsB, x, work);
}
开发者ID:larzw,项目名称:mathnet-numerics,代码行数:50,代码来源:AcmlLinearAlgebraProvider.Double.cs
示例10: QRSolve
/// <summary>
/// Solves A*X=B for X using QR factorization of A.
/// </summary>
/// <param name="a">The A matrix.</param>
/// <param name="rows">The number of rows in the A matrix.</param>
/// <param name="columns">The number of columns in the A matrix.</param>
/// <param name="b">The B matrix.</param>
/// <param name="columnsB">The number of columns of B.</param>
/// <param name="x">On exit, the solution matrix.</param>
/// <param name="method">The type of QR factorization to perform. <seealso cref="QRMethod"/></param>
/// <remarks>Rows must be greater or equal to columns.</remarks>
public virtual void QRSolve(float[] a, int rows, int columns, float[] b, int columnsB, float[] x, QRMethod method = QRMethod.Full)
{
if (a == null)
{
throw new ArgumentNullException("a");
}
if (b == null)
{
throw new ArgumentNullException("b");
}
if (x == null)
{
throw new ArgumentNullException("x");
}
if (a.Length != rows*columns)
{
throw new ArgumentException(Resources.ArgumentArraysSameLength, "a");
}
if (b.Length != rows*columnsB)
{
throw new ArgumentException(Resources.ArgumentArraysSameLength, "b");
}
if (x.Length != columns*columnsB)
{
throw new ArgumentException(Resources.ArgumentArraysSameLength, "x");
}
if (rows < columns)
{
throw new ArgumentException(Resources.RowsLessThanColumns);
}
var work = new float[rows * columns];
var clone = new float[a.Length];
a.Copy(clone);
if (method == QRMethod.Full)
{
var q = new float[rows*rows];
QRFactor(clone, rows, columns, q, work);
QRSolveFactored(q, clone, rows, columns, null, b, columnsB, x, method);
}
else
{
var r = new float[columns*columns];
ThinQRFactor(clone, rows, columns, r, work);
QRSolveFactored(clone, r, rows, columns, null, b, columnsB, x, method);
}
}
开发者ID:larzw,项目名称:mathnet-numerics,代码行数:66,代码来源:ManagedLinearAlgebraProvider.Single.cs
示例11: QRSolveFactored
/// <summary>
/// Solves A*X=B for X using a previously QR factored matrix.
/// </summary>
/// <param name="q">The Q matrix obtained by QR factor. This is only used for the managed provider and can be
/// <c>null</c> for the native provider. The native provider uses the Q portion stored in the R matrix.</param>
/// <param name="r">The R matrix obtained by calling <see cref="QRFactor(double[],int,int,double[],double[])"/>. </param>
/// <param name="rowsA">The number of rows in the A matrix.</param>
/// <param name="columnsA">The number of columns in the A matrix.</param>
/// <param name="tau">Contains additional information on Q. Only used for the native solver
/// and can be <c>null</c> for the managed provider.</param>
/// <param name="b">On entry the B matrix; on exit the X matrix.</param>
/// <param name="columnsB">The number of columns of B.</param>
/// <param name="x">On exit, the solution matrix.</param>
/// <param name="work">The work array - only used in the native provider. The array must have a length of at least N,
/// but should be N*blocksize. The blocksize is machine dependent. On exit, work[0] contains the optimal
/// work size value.</param>
/// <param name="method">The type of QR factorization to perform. <seealso cref="QRMethod"/></param>
/// <remarks>Rows must be greater or equal to columns.</remarks>
public virtual void QRSolveFactored(double[] q, double[] r, int rowsA, int columnsA, double[] tau, double[] b, int columnsB, double[] x, double[] work, QRMethod method = QRMethod.Full)
{
QRSolveFactored(q, r, rowsA, columnsA, tau, b, columnsB, x, method);
}
开发者ID:ArtyomBaranovskiy,项目名称:mathnet-numerics,代码行数:22,代码来源:ManagedLinearAlgebraProvider.Double.cs
示例12: QRSolveFactored
public override void QRSolveFactored(float[] q, float[] r, int rowsA, int columnsA, float[] tau, float[] b, int columnsB, float[] x, QRMethod method = QRMethod.Full)
{
if (r == null)
{
throw new ArgumentNullException("r");
}
if (q == null)
{
throw new ArgumentNullException("q");
}
if (b == null)
{
throw new ArgumentNullException("q");
}
if (x == null)
{
throw new ArgumentNullException("q");
}
int rowsQ, columnsQ, rowsR, columnsR;
if (method == QRMethod.Full)
{
rowsQ = columnsQ = rowsR = rowsA;
columnsR = columnsA;
}
else
{
rowsQ = rowsA;
columnsQ = rowsR = columnsR = columnsA;
}
if (r.Length != rowsR * columnsR)
{
throw new ArgumentException(string.Format(Resources.ArgumentArrayWrongLength, rowsR * columnsR), "r");
}
if (q.Length != rowsQ * columnsQ)
{
throw new ArgumentException(string.Format(Resources.ArgumentArrayWrongLength, rowsQ * columnsQ), "q");
}
if (b.Length != rowsA * columnsB)
{
throw new ArgumentException(string.Format(Resources.ArgumentArrayWrongLength, rowsA * columnsB), "b");
}
if (x.Length != columnsA * columnsB)
{
throw new ArgumentException(string.Format(Resources.ArgumentArrayWrongLength, columnsA * columnsB), "x");
}
if (method == QRMethod.Full)
{
var info = SafeNativeMethods.s_qr_solve_factored(rowsA, columnsA, columnsB, r, b, tau, x);
if (info == (int)NativeError.MemoryAllocation)
{
throw new MemoryAllocationException();
}
if (info < 0)
{
throw new InvalidParameterException(Math.Abs(info));
}
}
else
{
// we don't have access to the raw Q matrix any more(it is stored in R in the full QR), need to think about this.
// let just call the managed version in the meantime. The heavy lifting has already been done. -marcus
base.QRSolveFactored(q, r, rowsA, columnsA, tau, b, columnsB, x, QRMethod.Thin);
}
}
开发者ID:larzw,项目名称:mathnet-numerics,代码行数:75,代码来源:OpenBlasLinearAlgebraProvider.Single.cs
示例13: QRSolve
/// <summary>
/// Solves A*X=B for X using QR factorization of A.
/// </summary>
/// <param name="a">The A matrix.</param>
/// <param name="rows">The number of rows in the A matrix.</param>
/// <param name="columns">The number of columns in the A matrix.</param>
/// <param name="b">The B matrix.</param>
/// <param name="columnsB">The number of columns of B.</param>
/// <param name="x">On exit, the solution matrix.</param>
/// <param name="method">The type of QR factorization to perform. <seealso cref="QRMethod"/></param>
/// <remarks>Rows must be greater or equal to columns.</remarks>
public virtual void QRSolve(double[] a, int rows, int columns, double[] b, int columnsB, double[] x, QRMethod method = QRMethod.Full)
{
var work = new double[rows * columns];
QRSolve(a, rows, columns, b, columnsB, x, work, method);
}
开发者ID:ArtyomBaranovskiy,项目名称:mathnet-numerics,代码行数:16,代码来源:ManagedLinearAlgebraProvider.Double.cs
示例14: QRSolveFactored
/// <summary>
/// Solves A*X=B for X using a previously QR factored matrix.
/// </summary>
/// <param name="q">The Q matrix obtained by QR factor. This is only used for the managed provider and can be
/// <c>null</c> for the native provider. The native provider uses the Q portion stored in the R matrix.</param>
/// <param name="r">The R matrix obtained by calling <see cref="QRFactor(Complex[],int,int,Complex[],Complex[])"/>. </param>
/// <param name="rowsR">The number of rows in the A matrix.</param>
/// <param name="columnsR">The number of columns in the A matrix.</param>
/// <param name="tau">Contains additional information on Q. Only used for the native solver
/// and can be <c>null</c> for the managed provider.</param>
/// <param name="b">On entry the B matrix; on exit the X matrix.</param>
/// <param name="columnsB">The number of columns of B.</param>
/// <param name="x">On exit, the solution matrix.</param>
/// <param name="work">The work array - only used in the native provider. The array must have a length of at least N,
/// but should be N*blocksize. The blocksize is machine dependent. On exit, work[0] contains the optimal
/// work size value.</param>
/// <param name="method">The type of QR factorization to perform. <seealso cref="QRMethod"/></param>
/// <remarks>Rows must be greater or equal to columns.</remarks>
public virtual void QRSolveFactored(Complex[] q, Complex[] r, int rowsR, int columnsR, Complex[] tau, Complex[] b, int columnsB, Complex[] x, Complex[] work, QRMethod method = QRMethod.Full)
{
QRSolveFactored(q, r, rowsR, columnsR, tau, b, columnsB, x, method);
}
开发者ID:koponk,项目名称:mathnet-numerics,代码行数:22,代码来源:ManagedLinearAlgebraProvider.Complex.cs
示例15: QRSolve
/// <summary>
/// Solves A*X=B for X using QR factorization of A.
/// </summary>
/// <param name="a">The A matrix.</param>
/// <param name="rows">The number of rows in the A matrix.</param>
/// <param name="columns">The number of columns in the A matrix.</param>
/// <param name="b">The B matrix.</param>
/// <param name="columnsB">The number of columns of B.</param>
/// <param name="x">On exit, the solution matrix.</param>
/// <param name="method">The type of QR factorization to perform. <seealso cref="QRMethod"/></param>
/// <remarks>Rows must be greater or equal to columns.</remarks>
public virtual void QRSolve(Complex[] a, int rows, int columns, Complex[] b, int columnsB, Complex[] x, QRMethod method = QRMethod.Full)
{
var work = new Complex[rows*columns];
QRSolve(a, rows, columns, b, columnsB, x, work, method);
}
开发者ID:koponk,项目名称:mathnet-numerics,代码行数:16,代码来源:ManagedLinearAlgebraProvider.Complex.cs
示例16: QR
public override QR<Complex32> QR(QRMethod method = QRMethod.Thin)
{
return DenseQR.Create(this, method);
}
开发者ID:kapilash,项目名称:mathnet-numerics,代码行数:4,代码来源:DenseMatrix.cs
示例17: QRSolve
public override void QRSolve(float[] a, int rows, int columns, float[] b, int columnsB, float[] x, QRMethod method = QRMethod.Full)
{
if (a == null)
{
throw new ArgumentNullException("a");
}
if (b == null)
{
throw new ArgumentNullException("b");
}
if (x == null)
{
throw new ArgumentNullException("x");
}
if (a.Length != rows * columns)
{
throw new ArgumentException(Resources.ArgumentArraysSameLength, "a");
}
if (b.Length != rows * columnsB)
{
throw new ArgumentException(Resources.ArgumentArraysSameLength, "b");
}
if (x.Length != columns * columnsB)
{
throw new ArgumentException(Resources.ArgumentArraysSameLength, "x");
}
if (rows < columns)
{
throw new ArgumentException(Resources.RowsLessThanColumns);
}
var info = SafeNativeMethods.s_qr_solve(rows, columns, columnsB, a, b, x);
if (info == (int)NativeError.MemoryAllocation)
{
throw new MemoryAllocationException();
}
if (info < 0)
{
throw new InvalidParameterException(Math.Abs(info));
}
if (info > 0)
{
throw new ArgumentException(Resources.ArgumentMatrixNotRankDeficient, "a");
}
}
开发者ID:larzw,项目名称:mathnet-numerics,代码行数:54,代码来源:OpenBlasLinearAlgebraProvider.Single.cs
示例18: QRSolve
/// <summary>
/// Solves A*X=B for X using QR factorization of A.
/// </summary>
/// <param name="a">The A matrix.</param>
/// <param name="rows">The number of rows in the A matrix.</param>
/// <param name="columns">The number of columns in the A matrix.</param>
/// <param name="b">The B matrix.</param>
/// <param name="columnsB">The number of columns of B.</param>
/// <param name="x">On exit, the solution matrix.</param>
/// <remarks>Rows must be greater or equal to columns.</remarks>
public override void QRSolve(double[] a, int rows, int columns, double[] b, int columnsB, double[] x, QRMethod method = QRMethod.Full)
{
if (a == null)
{
throw new ArgumentNullException("a");
}
if (b == null)
{
throw new ArgumentNullException("b");
}
if (x == null)
{
throw new ArgumentNullException("x");
}
if (a.Length != rows*columns)
{
throw new ArgumentException(Resources.ArgumentArraysSameLength, "a");
}
if (b.Length != rows*columnsB)
{
throw new ArgumentException(Resources.ArgumentArraysSameLength, "b");
}
if (x.Length != columns*columnsB)
{
throw new ArgumentException(Resources.ArgumentArraysSameLength, "x");
}
if (rows < columns)
{
throw new ArgumentException(Resources.RowsLessThanColumns);
}
var work = new double[columns*Control.BlockSize];
QRSolve(a, rows, columns, b, columnsB, x, work);
}
开发者ID:larzw,项目名称:mathnet-numerics,代码行数:50,代码来源:AcmlLinearAlgebraProvider.Double.cs
示例19: DenseQR
DenseQR(Matrix<float> q, Matrix<float> rFull, QRMethod method, float[] tau)
: base(q, rFull, method)
{
Tau = tau;
}
开发者ID:Jungwon,项目名称:mathnet-numerics,代码行数:5,代码来源:DenseQR.cs
示例20: UserQR
UserQR(Matrix<Complex> q, Matrix<Complex> rFull, QRMethod method)
: base(q, rFull, method)
{
}
开发者ID:Jungwon,项目名称:mathnet-numerics,代码行数:4,代码来源:UserQR.cs
注:本文中的QRMethod类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论