• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

C# MyMemoryBlock类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了C#中MyMemoryBlock的典型用法代码示例。如果您正苦于以下问题:C# MyMemoryBlock类的具体用法?C# MyMemoryBlock怎么用?C# MyMemoryBlock使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



MyMemoryBlock类属于命名空间,在下文中一共展示了MyMemoryBlock类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C#代码示例。

示例1: MyFourierBinder

        public MyFourierBinder(MyWorkingNode owner, int inputSize, MyMemoryBlock<float> tempBlock)
            : base(owner, inputSize, tempBlock)
        {
            m_stream = new CudaStream();

            m_fft = new CudaFFTPlan1D(inputSize, cufftType.R2C, 1);
            m_fft.SetStream(m_stream.Stream);
            m_ifft = new CudaFFTPlan1D(inputSize, cufftType.C2R, 1);
            m_ifft.SetStream(m_stream.Stream);

            m_mulkernel = MyKernelFactory.Instance.Kernel(owner.GPU, @"Common\CombineVectorsKernel", "MulComplexElementWise");
            m_mulkernel.SetupExecution(inputSize + 1);

            m_involutionKernel = MyKernelFactory.Instance.Kernel(owner.GPU, @"Common\CombineVectorsKernel", "InvolveVector");
            m_involutionKernel.SetupExecution(inputSize - 1);

            m_inversionKernel = MyKernelFactory.Instance.Kernel(owner.GPU, @"Transforms\InvertValuesKernel", "InvertLengthComplexKernel");
            m_inversionKernel.SetupExecution(inputSize);

            m_dotKernel = MyKernelFactory.Instance.KernelProduct<float>(owner, owner.GPU, ProductMode.f_DotProduct_f);

            m_normalKernel = MyKernelFactory.Instance.Kernel(owner.GPU, @"Transforms\TransformKernels", "PolynomialFunctionKernel");
            m_normalKernel.SetupExecution(inputSize);

            m_firstFFTOffset = 0;
            m_secondFFTOffset = (inputSize + 1) * 2;
            m_tempOffset = (inputSize + 1) * 4;

            Denominator = inputSize;
        }
开发者ID:sschocke,项目名称:BrainSimulator,代码行数:30,代码来源:MyFourierBinder.cs


示例2: VectorOps

        public VectorOps(MyWorkingNode caller, VectorOperation operations, MyMemoryBlock<float> tempBlock)
        {
            m_caller = caller;
            m_operations = operations;
            m_temp = tempBlock;

            MatOperation mat_ops = MatOperation.None;

            if (m_operations.HasFlag(VectorOperation.Rotate))
            {
                Debug.Assert(tempBlock.Count >= 4, "Temporary memory block has to be large at least 4 items when using Rotate operation");
                mat_ops |= MatOperation.Multiplication;
            }

            if (m_operations.HasFlag(VectorOperation.Angle))
                mat_ops |= MatOperation.DotProd;

            if (m_operations.HasFlag(VectorOperation.DirectedAngle))
            {
                mat_ops |= MatOperation.Multiplication | MatOperation.DotProd;
                m_operations |= VectorOperation.Angle | VectorOperation.Rotate;
            }

            m_matOperation = new MyMatrixAutoOps(caller, mat_ops);
        }
开发者ID:sschocke,项目名称:BrainSimulator,代码行数:25,代码来源:VectorOps.cs


示例3: Run

 public override void Run(MatOperation operation, MyMemoryBlock<float> A, MyMemoryBlock<float> B, MyMemoryBlock<float> Result)
 {
     Result.Fill(.0f);
     switch (operation)
     {
         case MatOperation.EuclidDist:
             if (B.Count == A.ColumnHint)
             {
                 A.SafeCopyToHost();
                 B.SafeCopyToHost();
                 for (int row = 0; row < A.Count / A.ColumnHint; row++)
                 {
                     Result.Host[row] = 0;
                     for (int Bindex = 0; Bindex < B.Count; Bindex++)
                     {
                         Result.Host[row] += (B.Host[Bindex] - A.Host[A.ColumnHint * row + Bindex]) * (B.Host[Bindex] - A.Host[A.ColumnHint * row + Bindex]);
                     }
                     Result.Host[row] = (float)Math.Sqrt( (double) Result.Host[row] );
                     //System.Console.Write(" " + Result.Host[row]);
                 }
                 Result.SafeCopyToDevice();
             }
             break;
         default:
             MyLog.Writer.WriteLine(MyLogLevel.ERROR, "Trying to run cpu mat ops. for undefined MatOperation");
             break;
     }
 }
开发者ID:Jlaird,项目名称:BrainSimulator,代码行数:28,代码来源:MyMatrixCPUOps.cs


示例4: MyGradientBackPropAgent

 public MyGradientBackPropAgent(MyAbstractFeedForwardNode network, int nGPU, MyMemoryBlock<float> labelInput)
     : base(network)
 {
     m_updateWeightKernel = MyKernelFactory.Instance.Kernel(nGPU, @"XmlFeedForwardNet\UpdateWeightKernel");
     DeltaProvider = new MyLabelDeltaProvider(m_network, nGPU);
     DeltaProvider.LabelInput = labelInput;
 }
开发者ID:Jlaird,项目名称:BrainSimulator,代码行数:7,代码来源:MyGradientBackPropAgent.cs


示例5: MyPermutationBinder

 public MyPermutationBinder(MyWorkingNode owner, int inputSize, MyMemoryBlock<float> tempBlock)
     : base(owner, inputSize, tempBlock)
 {
     m_PermKernel = MyKernelFactory.Instance.Kernel(owner.GPU, @"Common\CombineVectorsKernel", "CombineVectorsKernel");
     m_PermKernel.SetupExecution(inputSize);
     m_binaryPermKernel = MyKernelFactory.Instance.Kernel(owner.GPU, @"Common\CombineVectorsKernel", "CombineTwoVectorsKernel");
     m_binaryPermKernel.SetupExecution(inputSize);
 }
开发者ID:J-F-B-M,项目名称:BrainSimulator,代码行数:8,代码来源:MyPermutationBinder.cs


示例6: SetInputMemoryBlock

 public void SetInputMemoryBlock(MyMemoryBlock<float> input, uint inputOffset = 0, uint sampleOffset = 0)
 {
     m_inputBlock = input;
     m_inputOffset = inputOffset;
     m_outputBlock = m_inputBlock;
     m_outputOffset = m_inputOffset;
     SendInputSampleOffsetToGPU(sampleOffset);
 }
开发者ID:Jlaird,项目名称:BrainSimulator,代码行数:8,代码来源:MyInputLayer.cs


示例7: SetupResultSize

        public static MyMemoryBlock<float> SetupResultSize(MatOperation operation, MyMemoryBlock<float> A, MyMemoryBlock<float> B, MyMemoryBlock<float> Result)
        {
            Result.Count = A != null ? A.Count : 1;
            Result.ColumnHint = A != null ? A.ColumnHint : 1;

            if (A != null)
            {
                if (operation == MatOperation.DotProd)
                {
                    Result.Count = Result.ColumnHint = 1;
                }
                else if (operation == MatOperation.AbsMinIndex || operation == MatOperation.AbsMaxIndex)
                {
                    Result.ColumnHint = 1;
                    Result.Count = 1;
                }
                else if (operation == MatOperation.Multiplication)
                {
                    if (A != null && B != null && A.ColumnHint != 0 && B.Count > 1)
                    {
                        Result.ColumnHint = B.ColumnHint;
                        Result.Count = B.ColumnHint * A.Count / A.ColumnHint;
                    }
                }
                else if (operation == MatOperation.GetCol)
                {
                    Result.Count = A.Count / A.ColumnHint;
                    Result.ColumnHint = Result.Count;
                }
                else if (operation == MatOperation.GetRow)
                {
                    Result.Count = A.ColumnHint;
                    Result.ColumnHint = Result.Count;
                }
                else if (B != null && (operation == MatOperation.MultiplElemntWise || operation == MatOperation.Addition))
                {
                    Result.ColumnHint = Math.Max(A.ColumnHint, B.ColumnHint);
                    Result.Count = Math.Max(A.Count, B.Count);
                }
                else if (operation == MatOperation.Transpose)
                {
                    if ((A.ColumnHint != 0) && (A.Count > 0))  // prevent dimension of size 0
                    {
                        Result.Dims.Set(new[] { -1, A.Count / A.ColumnHint });
                    }
                }
                else if (operation == MatOperation.EuclidDist)
                {
                    if (B != null)
                    {
                        Result.Count = A.Count / A.ColumnHint;
                        Result.ColumnHint = 1;
                    }

                }
            }
            return Result;
        }
开发者ID:Soucha,项目名称:BrainSimulator,代码行数:58,代码来源:MyMatrixOps.cs


示例8: MyMatrixKernelOps

        public MyMatrixKernelOps(MyWorkingNode callee, MatOperation operations, MyMemoryBlock<float> A, MyMemoryBlock<float> B = null)
        {
            OpersKerlsDictionary = new Dictionary<MatOperation, MyCudaKernel>();
            this.callee = callee;

            if ((operations & MatOperation.Log) > 0)
            {
                OpersKerlsDictionary.Add(MatOperation.Log, MyKernelFactory.Instance.Kernel(callee.GPU, @"Vision\Matrix", "LogKernel_naive"));
            }
            if ((operations & MatOperation.Exp) > 0)
            {
                OpersKerlsDictionary.Add(MatOperation.Exp, MyKernelFactory.Instance.Kernel(callee.GPU, @"Vision\Matrix", "ExpKernel_naive"));
            }
            if ((operations & MatOperation.Round) > 0)
            {
                OpersKerlsDictionary.Add(MatOperation.Round, MyKernelFactory.Instance.Kernel(callee.GPU, @"Vision\Matrix", "RoundKernel_naive"));
            }
            if ((operations & MatOperation.Floor) > 0)
            {
                OpersKerlsDictionary.Add(MatOperation.Floor, MyKernelFactory.Instance.Kernel(callee.GPU, @"Vision\Matrix", "FloorKernel_naive"));
            }
            if ((operations & MatOperation.Ceil) > 0)
            {
                OpersKerlsDictionary.Add(MatOperation.Ceil, MyKernelFactory.Instance.Kernel(callee.GPU, @"Vision\Matrix", "CeilKernel_naive"));
            }
            if ((operations & MatOperation.Abs) > 0)
            {
                OpersKerlsDictionary.Add(MatOperation.Abs, MyKernelFactory.Instance.Kernel(callee.GPU, @"Vision\Matrix", "AbsKernel_naive"));
            }
            if ((operations & MatOperation.GetCol) > 0)
            {
                OpersKerlsDictionary.Add(MatOperation.GetCol, MyKernelFactory.Instance.Kernel(callee.GPU, @"Vision\Matrix", "Matrix_getCol_FloatId_naive"));
            }
            if ((operations & MatOperation.GetRow) > 0)
            {
                OpersKerlsDictionary.Add(MatOperation.GetRow, MyKernelFactory.Instance.Kernel(callee.GPU, @"Vision\Matrix", "Matrix_getRow_FloatId_naive"));
            }
            if ((operations & MatOperation.MultiplElemntWise) > 0)
            {
                OpersKerlsDictionary.Add(MatOperation.MultiplElemntWise, MyKernelFactory.Instance.Kernel(callee.GPU, @"Vision\Matrix", "Matrix_MultiplElementWise_naive"));
            }
            if ((operations & MatOperation.Addition) > 0)
            {
                OpersKerlsDictionary.Add(MatOperation.Addition, MyKernelFactory.Instance.Kernel(callee.GPU, @"Vision\Matrix", "Matrix_Addition_naive"));
            }
            if ((operations & MatOperation.Substraction) > 0)
            {
                OpersKerlsDictionary.Add(MatOperation.Substraction, MyKernelFactory.Instance.Kernel(callee.GPU, @"Vision\Matrix", "Matrix_Substraction_naive"));
            }
            if (operations > 0 && OpersKerlsDictionary.Count == 0)
            {
                MyLog.Writer.WriteLine(MyLogLevel.ERROR, "Trying to init kernel MatrixOps for undefined MatOperation");
            }
        }
开发者ID:Jlaird,项目名称:BrainSimulator,代码行数:54,代码来源:MyMatrixKernelOps.cs


示例9: Unbind

        public virtual void Unbind(MyMemoryBlock<float> firstInput, MyMemoryBlock<float> secondInput, MyMemoryBlock<float> output)
        {
            int nrInputs = secondInput.Count / m_inputSize;

            var vecs = nrInputs > 1
                // Concatenate pointers to the individual vectors
                ? Enumerable.Range(0, nrInputs).Select(i => secondInput.GetDevicePtr(m_owner) + i * m_inputSize * sizeof(float))
                // Use only a singe pointer
                : Enumerable.Repeat(secondInput.GetDevicePtr(m_owner), 1);

            Unbind(firstInput.GetDevicePtr(m_owner), vecs, output.GetDevicePtr(m_owner));
        }
开发者ID:sschocke,项目名称:BrainSimulator,代码行数:12,代码来源:MySymbolBinderBase.cs


示例10: MyInputLayer

        public MyInputLayer(MyAbstractFeedForwardNode network, MyMemoryBlock<float> input, SizeT offset, SizeT nb, SizeT width, SizeT height, SizeT nbSamplesPerStep)
            : base(network)
        {
            m_inputBlock = input;
            m_inputOffset = offset;

            m_output.Nb = nb;
            m_output.Width = width;
            m_output.Height = height;

            m_nbSamplesPerStep = nbSamplesPerStep;
        }
开发者ID:Jlaird,项目名称:BrainSimulator,代码行数:12,代码来源:MyInputLayer.cs


示例11: Validate

        public static bool Validate(MyStackingOperation operation, IEnumerable<MyMemoryBlock<float>> inputs, MyMemoryBlock<float> output, out string errorOutput)
        {
            errorOutput = null;

            inputs = inputs.Where(a => a != null);

            switch (operation)
            {
                case MyStackingOperation.None:
                    return true;

                case MyStackingOperation.Concatenate:
                case MyStackingOperation.Interweave:
                    break;

                default:
                    errorOutput = "Invalid operation. Only a single value within the enum range should be passed.";
                    return false;
            }

            if (!inputs.Any())
            {
                errorOutput = "No inputs for stacking operation to run on.";
                return false;
            }

            if (operation == MyStackingOperation.Interweave)
            {
                if (inputs.Any(a => a.ColumnHint == 0))
                {
                    errorOutput = "Invalid column hints. They must be positive.";
                    return false;
                }

                MyMemoryBlock<float> first = inputs.First();
                int rows = first.Count / first.ColumnHint;

                if (inputs.Any(a => a.Count / a.ColumnHint != rows))
                {
                    errorOutput = "Invalid input row counts. Inputs must have the same number of rows.";
                    return false;
                }
            }

            if (inputs.Sum(a => a.Count) > output.Count)
            {
                errorOutput = "Invalid output size: " + output.Count + ". Must be large enough to contain all the inputs.";
                return false;
            }

            return true;
        }
开发者ID:sschocke,项目名称:BrainSimulator,代码行数:52,代码来源:MyStackingOps.cs


示例12: Bind

        public virtual void Bind(MyMemoryBlock<float> inputs, MyMemoryBlock<float> output)
        {
            int nrInputs = inputs.Count / m_inputSize;
            CUdeviceptr start = inputs.GetDevicePtr(m_owner);
            CUdeviceptr[] arr = GetTempArray(nrInputs); //-1 to skip the first +1 to include output
            for (int i = 0; i < nrInputs - 1; ++i)
            {
                arr[i] = start + (i + 1) * m_inputSize * sizeof(float);
            }

            arr[nrInputs - 1] = output.GetDevicePtr(m_owner);

            Bind(start, arr);
        }
开发者ID:J-F-B-M,项目名称:BrainSimulator,代码行数:14,代码来源:MySymbolBinderBase.cs


示例13: MyMatrixAutoOps

 public MyMatrixAutoOps(MyWorkingNode callee, MatOperation operations, MyMemoryBlock<float> A = null)
 {
     if ((MyMatrixKernelOps.AvailableOperations() & operations) > 0)
     {
         MatKerlOps = new MyMatrixKernelOps(callee, operations);
     }
     if ((MyMatrixCublasOps.AvailableOperations() & operations) > 0)
     {
         MatCublOps = new MyMatrixCublasOps(callee);
     }
     if ((MyMatrixCPUOps.AvailableOperations() & operations) > 0)
     {
         MatCPUOps = new MyMatrixCPUOps(callee);
     }
 }
开发者ID:sschocke,项目名称:BrainSimulator,代码行数:15,代码来源:MyMatrixAutoOps.cs


示例14: Run

 public override void Run(MatOperation operation, MyMemoryBlock<float> A, float value, MyMemoryBlock<float> Result)
 {
     if ((MyMatrixCublasOps.AvailableOperations() & operation) > 0)
     {
         MatCublOps.Run(operation, A, value, Result);
     }
     else if ((MyMatrixKernelOps.AvailableOperations() & operation) > 0)
     {
         MatKerlOps.Run(operation, A, value, Result);
     }
     else
     {
         MyLog.Writer.WriteLine(MyLogLevel.ERROR, "Trying to run undefined MatOps");
     }
 }
开发者ID:sschocke,项目名称:BrainSimulator,代码行数:15,代码来源:MyMatrixAutoOps.cs


示例15: UnbindMultiple

        public virtual void UnbindMultiple(MyMemoryBlock<float> firstInput, MyMemoryBlock<float> otherInputs, MyMemoryBlock<float> output)
        {
            int nrInputs = otherInputs.Count / m_inputSize;
            CUdeviceptr firstPtr = firstInput.GetDevicePtr(m_owner);
            CUdeviceptr start = otherInputs.GetDevicePtr(m_owner);
            CUdeviceptr[] arr = GetTempArray(nrInputs + 1);//+1 for output

            for (int i = 0; i <= nrInputs; ++i)
            {
                arr[i] = start + i * m_inputSize * sizeof(float);
            }

            arr[nrInputs] = output.GetDevicePtr(m_owner);

            Unbind(firstPtr, arr);
        }
开发者ID:J-F-B-M,项目名称:BrainSimulator,代码行数:16,代码来源:MySymbolBinderBase.cs


示例16: SetupResultSize

        public static MyMemoryBlock<float> SetupResultSize(MatOperation operation, MyMemoryBlock<float> A, MyMemoryBlock<float> B, MyMemoryBlock<float> Result)
        {
            Result.Count = A != null ? A.Count : 1;
            Result.ColumnHint = A != null ? A.ColumnHint : 1;

            if (A != null)
            {
                if (operation == MatOperation.DotProd)
                {
                    Result.Count = Result.ColumnHint = 1;
                }
                else if (operation == MatOperation.Multiplication)
                {
                    if (A != null && B != null && A.ColumnHint != 0 && B.Count > 1)
                    {
                        Result.ColumnHint = B.ColumnHint;
                        Result.Count = B.ColumnHint * A.Count / A.ColumnHint;
                    }
                }
                else if (operation == MatOperation.GetCol)
                {
                    Result.Count = A.Count / A.ColumnHint;
                    Result.ColumnHint = Result.Count;
                }
                else if (operation == MatOperation.GetRow)
                {
                    Result.Count = A.ColumnHint;
                    Result.ColumnHint = Result.Count;
                }
                else if (B != null && (operation == MatOperation.MultiplElemntWise || operation == MatOperation.Addition))
                {
                    Result.ColumnHint = Math.Max(A.ColumnHint, B.ColumnHint);
                    Result.Count = Math.Max(A.Count, B.Count);
                }
                else if (operation == MatOperation.Transpose)
                {
                    if (A.ColumnHint != 0)
                    {
                        Result.ColumnHint = A.Count / A.ColumnHint;
                    }
                }
            }
            return Result;
        }
开发者ID:J-F-B-M,项目名称:BrainSimulator,代码行数:44,代码来源:MyMatrixOps.cs


示例17: MyDistanceOps

        public MyDistanceOps(MyWorkingNode caller, DistanceOperation operations, MyMemoryBlock<float> tempBlock = null)
        {
            m_caller = caller;
            m_operations = operations;
            m_temp = tempBlock;

            if (operations.HasFlag(DistanceOperation.DotProd))
            {
                m_dotKernel = MyKernelFactory.Instance.KernelProduct<float>(caller, caller.GPU, ProductMode.f_DotProduct_f);
            }

            if (operations.HasFlag(DistanceOperation.CosDist))
            {
                m_cosKernel = MyKernelFactory.Instance.KernelProduct<float>(caller, caller.GPU, ProductMode.f_Cosine_f);
            }

            if (operations.HasFlag(DistanceOperation.EuclidDist) || operations.HasFlag(DistanceOperation.EuclidDistSquared))
            {
                // EuclidDist computes EuclidDistSquared first, so keep them together:
                m_operations |= DistanceOperation.EuclidDist | DistanceOperation.EuclidDistSquared;
                m_dotKernel = MyKernelFactory.Instance.KernelProduct<float>(caller, caller.GPU, ProductMode.f_DotProduct_f);
            }

            if (operations.HasFlag(DistanceOperation.HammingDist))
            {
                m_reduceSumKernel = MyKernelFactory.Instance.KernelReduction<float>(caller, caller.GPU, ReductionMode.f_Sum_f);
            }
            if (operations.HasFlag(DistanceOperation.HammingSim))
            {
                m_reduceSumKernel = MyKernelFactory.Instance.KernelReduction<float>(caller, caller.GPU, ReductionMode.f_Sum_f);
            }

            if (operations.HasFlag(DistanceOperation.EuclidDist) || operations.HasFlag(DistanceOperation.EuclidDistSquared) ||
                operations.HasFlag(DistanceOperation.HammingDist) || operations.HasFlag(DistanceOperation.HammingSim))
            {
                m_combineVecsKernel = MyKernelFactory.Instance.Kernel(m_caller.GPU, @"Common\CombineVectorsKernel", "CombineTwoVectorsKernel");
            }
        }
开发者ID:sschocke,项目名称:BrainSimulator,代码行数:38,代码来源:MyDistanceOps.cs


示例18: MyMatrixCublasOps

 //private CudaBlas cublas = null;
 public MyMatrixCublasOps(MyWorkingNode callee, MatOperation operation = 0, MyMemoryBlock<float> A = null, MyMemoryBlock<float> tmp = null)
 {
     //  cublas = new CudaBlas();
     this.callee = callee;
 }
开发者ID:Jlaird,项目名称:BrainSimulator,代码行数:6,代码来源:MyMatrixCublasOps.cs


示例19: Run

 public override void Run(MatOperation operation, MyMemoryBlock<float> A, float value, MyMemoryBlock<float> Result)
 {
     Result.Fill(.0f);
     switch (operation)
     {
         case MatOperation.Multiplication:
             MyCublasFactory.Instance.Axpy(value, A.GetDevice(callee), 1, Result.GetDevice(callee), 1);
             break;
         default:
             MyLog.Writer.WriteLine(MyLogLevel.ERROR, "Trying to run cublas for undefined MatOperation");
             break;
     }
 }
开发者ID:Jlaird,项目名称:BrainSimulator,代码行数:13,代码来源:MyMatrixCublasOps.cs


示例20: Init

            // Sets up the genetic task
            public override void Init(int nGPU)
            {
                currentGen = 0;
                m_weights = 0;

                // Load the relevant kernels
                m_coeffGenKernel = MyKernelFactory.Instance.Kernel(nGPU, @"Genetic\CosyneGenetics", "generateCoefficients");
                m_geneticKernel = MyKernelFactory.Instance.Kernel(nGPU, @"Genetic\CosyneGenetics", "grow");
                m_extractKernel = MyKernelFactory.Instance.Kernel(nGPU, @"Genetic\CosyneGenetics", "extractCoeffs");
                m_cosineGenKernel = MyKernelFactory.Instance.Kernel(nGPU, @"Genetic\CosyneGenetics", "createCosineMatrix");
                m_implantKernel = MyKernelFactory.Instance.Kernel(nGPU, @"Genetic\CosyneGenetics", "implantCoeffs");

                // Init the random generator
                m_rand = new Random();

                // Set up coefficient Generation
                m_coeffGenKernel.SetupExecution(Owner.PopulationSize);
                // Set up genetic recombination
                m_geneticKernel.SetupExecution(Owner.PopulationSize);

                // This finds the first nn group in the network. Possibility of getting a list of networks and evolving them all seperately?
                List<MyNode> ch = Owner.Owner.Network.Children;
                foreach (MyNode n in ch)
                {
                    if (n is MyNeuralNetworkGroup)
                    {
                        nn = n as MyNeuralNetworkGroup;
                        MyLog.INFO.WriteLine("Evolving the layers of node: " + nn.Name);
                        break;
                    }
                }
                if (nn == null)
                {
                    throw new NullReferenceException("There is no top level NeuralNetworkGroup.");
                }

                // Construct the layerlist which is to be read from and written to
                constructLayerList(nn);

                // This is how big the weight matrix will be
                arr_size = (int)Math.Ceiling(Math.Sqrt(m_weights));

                // Get the relevant execution plan
                m_executionPlan = Owner.Owner.SimulationHandler.Simulation.ExecutionPlan[0];

                #region MemoryBlocks
                // Initialise the population
                population = new List<MyMemoryBlock<float>>();
                outputPop = new List<MyMemoryBlock<float>>();
                for (int i = 0; i < Owner.PopulationSize; i++)
                {
                    population.Add(new MyMemoryBlock<float>());
                    population[i].Owner = Owner;
                    population[i].Count = arr_size * arr_size;
                    population[i].AllocateMemory();

                    outputPop.Add(new MyMemoryBlock<float>());
                    outputPop[i].Owner = Owner;
                    outputPop[i].Count = arr_size * arr_size;
                    outputPop[i].AllocateMemory();
                }

                // Allocate space to manipulate weight matrices on the device
                cudaMatrices = new MyMemoryBlock<float>();
                cudaMatrices.Owner = Owner;
                cudaMatrices.Count = arr_size * arr_size * Owner.PopulationSize;
                cudaMatrices.AllocateDevice();

                // Allocate a memory block for the Cosine matrix
                multiplier = new MyMemoryBlock<float>();
                multiplier.Owner = Owner;
                multiplier.Count = arr_size * arr_size;
                multiplier.AllocateDevice();

                // Fill the cosine Matrices
                m_cosineGenKernel.SetupExecution(arr_size);
                m_cosineGenKernel.Run(multiplier, arr_size);

                // Allocate space needed for chromosomes
                chromosomePop = new MyMemoryBlock<float>();
                chromosomePop.Owner = Owner;
                if (DirectEvolution)
                    chromosomePop.Count = m_weights * Owner.PopulationSize;
                else
                    chromosomePop.Count = CoefficientsSaved * Owner.PopulationSize;
                chromosomePop.AllocateMemory();

                // Allocate some space for noise to seed the cuda_rand generator
                noise = new MyMemoryBlock<float>();
                noise.Owner = Owner;
                noise.Count = Owner.PopulationSize;
                noise.AllocateMemory();

                // Write some noise to the initial array
                for (int i = 0; i < Owner.PopulationSize; i++)
                {
                    noise.Host[i] = (float)m_rand.NextDouble() * 100000 + (float)m_rand.NextDouble() * 40;
                }
                noise.SafeCopyToDevice();
//.........这里部分代码省略.........
开发者ID:Soucha,项目名称:BrainSimulator,代码行数:101,代码来源:MyGeneticTrainingWorld.cs



注:本文中的MyMemoryBlock类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
C# MyMessage类代码示例发布时间:2022-05-24
下一篇:
C# MyMath类代码示例发布时间:2022-05-24
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap